Analytical Electron Microscopy for Materials Science

Analytical Electron Microscopy for Materials Science
Author: DAISUKE Shindo
Publisher: Springer Science & Business Media
Total Pages: 162
Release: 2013-04-17
Genre: Science
ISBN: 4431669884


Download Analytical Electron Microscopy for Materials Science Book in PDF, Epub and Kindle

Analytical electron microscopy is one of the most powerful tools today for characterization of the advanced materials that support the nanotechnology of the twenty-first century. In this book the authors clearly explain both the basic principles and the latest developments in the field. In addition to a fundamental description of the inelastic scattering process, an explanation of the constituent hardware is provided. Standard quantitative analytical techniques employing electron energy-loss spectroscopy and energy-dispersive X-ray spectroscopy are also explained, along with elemental mapping techniques. Included are sections on convergent beam electron diffraction and electron holography utilizing the field emission gun. With generous use of illustrations and experimental data, this book is a valuable resource for anyone concerned with materials characterization, electron microscopy, materials science, crystallography, and instrumentation.

Transmission Electron Microscopy and Diffractometry of Materials

Transmission Electron Microscopy and Diffractometry of Materials
Author: Brent Fultz
Publisher: Springer Science & Business Media
Total Pages: 763
Release: 2013-06-29
Genre: Technology & Engineering
ISBN: 3662049015


Download Transmission Electron Microscopy and Diffractometry of Materials Book in PDF, Epub and Kindle

This practical and theoretical text/reference develops the concepts of transmission electron microscopy and x-ray diffractometry. This acclaimed new edition contains many improved explanations and new material on high-resolution microscopy.

Transmission Electron Microscopy

Transmission Electron Microscopy
Author: David B. Williams
Publisher: Springer Science & Business Media
Total Pages: 804
Release: 2009-08-05
Genre: Science
ISBN: 038776500X


Download Transmission Electron Microscopy Book in PDF, Epub and Kindle

This groundbreaking text has been established as the market leader throughout the world. Profusely illustrated, the book provides the necessary instructions for successful hands-on application of this versatile materials characterization technique.

High-Resolution Electron Microscopy for Materials Science

High-Resolution Electron Microscopy for Materials Science
Author: Daisuke Shindo
Publisher: Springer Science & Business Media
Total Pages: 196
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 4431684220


Download High-Resolution Electron Microscopy for Materials Science Book in PDF, Epub and Kindle

High-resolution electron microscopy (HREM) has become a most powerful method for investigating the internal structure of materials on an atomic scale of around 0.1 nm. The authors clearly explain both the theory and practice of HREM for materials science. In addition to a fundamental formulation of the imaging process of HREM, there is detailed explanation of image simulationindispensable for interpretation of high-resolution images. Essential information on appropriate imaging conditions for observing lattice images and structure images is presented, and methods for extracting structural information from these observations are clearly shown, including examples in advanced materials. Dislocations, interfaces, and surfaces are dealt with, and materials such as composite ceramics, high-Tc superconductors, and quasicrystals are also considered. Included are sections on the latest instruments and techniques, such as the imaging plate and quantitative HREM.

Principles of Analytical Electron Microscopy

Principles of Analytical Electron Microscopy
Author: Joseph Goldstein
Publisher: Springer Science & Business Media
Total Pages: 458
Release: 2013-11-11
Genre: Science
ISBN: 1489920374


Download Principles of Analytical Electron Microscopy Book in PDF, Epub and Kindle

Since the publication in 1979 of Introduction to Analytical Electron Microscopy (ed. J. J. Hren, J. I. Goldstein, and D. C. Joy; Plenum Press), analytical electron microscopy has continued to evolve and mature both as a topic for fundamental scientific investigation and as a tool for inorganic and organic materials characterization. Significant strides have been made in our understanding of image formation, electron diffraction, and beam/specimen interactions, both in terms of the "physics of the processes" and their practical implementation in modern instruments. It is the intent of the editors and authors of the current text, Principles of Analytical Electron Microscopy, to bring together, in one concise and readily accessible volume, these recent advances in the subject. The text begins with a thorough discussion of fundamentals to lay a foundation for today's state-of-the-art microscopy. All currently important areas in analytical electron microscopy-including electron optics, electron beam/specimen interactions, image formation, x-ray microanalysis, energy-loss spectroscopy, electron diffraction and specimen effects-have been given thorough attention. To increase the utility of the volume to a broader cross section of the scientific community, the book's approach is, in general, more descriptive than mathematical. In some areas, however, mathematical concepts are dealt with in depth, increasing the appeal to those seeking a more rigorous treatment of the subject.

Introduction to Analytical Electron Microscopy

Introduction to Analytical Electron Microscopy
Author: John Hren
Publisher: Springer Science & Business Media
Total Pages: 609
Release: 2013-11-11
Genre: Technology & Engineering
ISBN: 1475755813


Download Introduction to Analytical Electron Microscopy Book in PDF, Epub and Kindle

The birth of analytical electron microscopy (AEM) is somewhat obscure. Was it the recognition of the power and the development of STEM that signaled its birth? Was AEM born with the attachment of a crystal spectrometer to an otherwise conventional TEM? Or was it born earlier with the first analysis of electron loss spectra? It's not likely that any of these developments alone would have been sufficient and there have been many others (microdiffraction, EDS, microbeam fabrication, etc.) that could equally lay claim to being critical to the establishment of true AEM. It is probably more accurate to simply ascribe the present rapid development to the obvious: a combination of ideas whose time has come. Perhaps it is difficult to trace the birth of AEM simply because it remains a point of contention to even define its true scope. For example, the topics in this book, even though very broad, are still far from a complete description of what many call AEM. When electron beams interact with a solid it is well-known that a bewildering number of possible interactions follow. Analytical electron microscopy attempts to take full qualitative and quantitative advantage of as many of these interactions as possible while still preserving the capability of high resolution imaging. Although we restrict ourselves here to electron transparent films, much of what is described applies to thick specimens as well. Not surprisingly, signals from all possible interactions cannot yet (and probably never will) be attained simultaneously under optimum conditions.

Practical Materials Characterization

Practical Materials Characterization
Author: Mauro Sardela
Publisher: Springer
Total Pages: 242
Release: 2014-07-10
Genre: Technology & Engineering
ISBN: 1461492815


Download Practical Materials Characterization Book in PDF, Epub and Kindle

Practical Materials Characterization covers the most common materials analysis techniques in a single volume. It stands as a quick reference for experienced users, as a learning tool for students, and as a guide for the understanding of typical data interpretation for anyone looking at results from a range of analytical techniques. The book includes analytical methods covering microstructural, surface, morphological, and optical characterization of materials with emphasis on microscopic structural, electronic, biological, and mechanical properties. Many examples in this volume cover cutting-edge technologies such as nanomaterials and life sciences.