Numerical Modeling of Shock-sensitivity Experiments

Numerical Modeling of Shock-sensitivity Experiments
Author:
Publisher:
Total Pages:
Release: 1981
Genre:
ISBN:


Download Numerical Modeling of Shock-sensitivity Experiments Book in PDF, Epub and Kindle

The Forest Fire rate model of shock initiation of heterogeneous explosives has been used to study several experiments commonly performed to measure the sensitivity of explosives to shock and to study initiation by explosive-formed jets. The minimum priming charge test, the gap test, the shotgun test, sympathetic detonation, and jet initiation have been modeled numerically using the Forest Fire rate in the reactive hydrodynamic codes SIN and 2DE.

Numerical Modeling of Explosives and Propellants

Numerical Modeling of Explosives and Propellants
Author: Charles L. Mader
Publisher: CRC Press
Total Pages: 539
Release: 2007-10-18
Genre: Technology & Engineering
ISBN: 142005239X


Download Numerical Modeling of Explosives and Propellants Book in PDF, Epub and Kindle

Major advances, both in modeling methods and in the computing power required to make those methods viable, have led to major breakthroughs in our ability to model the performance and vulnerability of explosives and propellants. In addition, the development of proton radiography during the last decade has provided researchers with a major new experimental tool for studying explosive and shock wave physics. Problems that were once considered intractable – such as the generation of water cavities, jets, and stems by explosives and projectiles – have now been solved. Numerical Modeling of Explosives and Propellants, Third Edition provides a complete overview of this rapidly emerging field, covering basic reactive fluid dynamics as well as the latest and most complex methods and findings. It also describes and evaluates Russian contributions to the experimental explosive physics database, which only recently have become available. This book comes with downloadable resources that contain— · FORTRAN and executable computer codes that operate under Microsoft® Windows Vista operating system and the OS X operating system for Apple computers · Windows Vista and MAC compatible movies and PowerPoint presentations for each chapter · Explosive and shock wave databases generated at the Los Alamos National Laboratory and the Russian Federal Nuclear Centers Charles Mader’s three-pronged approach – through text, computer programs, and animations – imparts a thorough understanding of new computational methods and experimental measuring techniques, while also providing the tools to put these methods to effective use.

Numerical Modeling of Explosives and Propellants, Second Edition

Numerical Modeling of Explosives and Propellants, Second Edition
Author: Charles L. Mader
Publisher: CRC Press
Total Pages: 456
Release: 1997-08-29
Genre: Technology & Engineering
ISBN: 9780849331497


Download Numerical Modeling of Explosives and Propellants, Second Edition Book in PDF, Epub and Kindle

Charles Mader, a leading scientist who conducted theoretical research at Los Alamos National Laboratory for more than 30 years, sets a new standard with this reference on numerical modeling of explosives and propellants. This book updates and expands the information presented in the author's landmark work, Numerical Modeling of Detonations, published in 1979 and still in use today. Numerical Modeling of Explosives and Propellants incorporates the considerable changes the personal computer has brought to numerical modeling since the first book was published, and includes new three-dimensional modeling techniques and new information on propellant performance and vulnerability. Both an introduction to the physics and chemistry of explosives and propellants and a guide to numerical modeling of detonation and reactive fluid dynamics, Numerical Modeling of Explosives and Propellants offers scientists and engineers a complete picture of the current state of explosive and propellant technology and numerical modeling. The book is richly illustrated with figures that support the concepts, and filled with tables for quick access to precise data. The accompanying CD-ROM contains computer codes that are the national standard by which modeling is evaluated. Dynamic material properties data files and animation files are also included. There is no other book available today that offers this vital information.

Numerical Simulation Model on Irreversibility of Shock-Wave Process

Numerical Simulation Model on Irreversibility of Shock-Wave Process
Author: Longhao Huang
Publisher:
Total Pages:
Release: 2013
Genre: Continuum mechanics
ISBN:


Download Numerical Simulation Model on Irreversibility of Shock-Wave Process Book in PDF, Epub and Kindle

The objective of this research is to develop a better understanding of the irreversibilities associated with the shock compaction of matter, especially as a result of impact. Due to complex shock processes, experimentation alone cannot fix the material state, since properties such as internal energy, entropy as well as the shock process are not measurable. Thus, in addition to experimentation, analytical and numerical methods are also used to completely characterize the shock process, although they are restricted by underlying constitutive assumptions. Instead of using artificial irreversibility, such as artificial viscosity to simplify and stabilize the numeric shock model, this work will directly incorporate and solve the correct constitutive relations that describe the sources of irreversibility. Shock wave processes in gas and water are simulated and two equations of state (EOS) are discussed. For a one-dimensional shock wave in gas, results from simulations at two different non-dimensional scales utilizing two different EOS are comparable to the idealized analytical solution and experimental data. Besides, the Mie-Grüneisen (M-G) equation of state, which has been used for solids, is extended to study gas and liquid. The value of Mie-Grüneisen constant, which is a function of atom oscillator frequency and specific volume, is hard to detect from experiment. Based on statistical mechanics, a relationship between the gas Mie-Grüneisen constant and specific heat ratio is derived analytically, which makes Mie-Grüneisen EOS available for gas. The M-G constant is also derived from shock jump condition and Mie-Grüneisen EOS for water and a sensitivity analysis is done based on the simulation result.

Proceedings

Proceedings
Author:
Publisher:
Total Pages: 1126
Release: 1982
Genre: Acoustic phenomena in nature
ISBN:


Download Proceedings Book in PDF, Epub and Kindle

Energy Research Abstracts

Energy Research Abstracts
Author:
Publisher:
Total Pages: 444
Release: 1994
Genre: Power resources
ISBN:


Download Energy Research Abstracts Book in PDF, Epub and Kindle

Testing and Modeling of PBX-9591 Shock Initiation

Testing and Modeling of PBX-9591 Shock Initiation
Author:
Publisher:
Total Pages:
Release: 2010
Genre:
ISBN:


Download Testing and Modeling of PBX-9591 Shock Initiation Book in PDF, Epub and Kindle

This paper describes an ongoing effort to develop a detonation sensitivity test for PBX-9501 that is suitable for studying pristine and damaged HE. The approach involves testing and comparing the sensitivities of HE pressed to various densities and those of pre-damaged samples with similar porosities. The ultimate objectives are to understand the response of pre-damaged HE to shock impacts and to develop practical computational models for use in system analysis codes for HE safety studies. Computer simulation with the CTH shock physics code is used to aid the experimental design and analyze the test results. In the calculations, initiation and growth or failure of detonation are modeled with the empirical HVRB model. The historical LANL SSGT and LSGT were reviewed and it was determined that a new, modified gap test be developed to satisfy the current requirements. In the new test, the donor/spacer/acceptor assembly is placed in a holder that is designed to work with fixtures for pre-damaging the acceptor sample. CTH simulations were made of the gap test with PBX-9501 samples pressed to three different densities. The calculated sensitivities were validated by test observations. The agreement between the computed and experimental critical gap thicknesses, ranging from 9 to 21 mm under various test conditions, is well within 1 mm. These results show that the numerical modeling is a valuable complement to the experimental efforts in studying and understanding shock initiation of PBX-9501.

Publications of Los Alamos Research

Publications of Los Alamos Research
Author: Los Alamos National Laboratory
Publisher:
Total Pages: 192
Release: 1984
Genre: Research
ISBN:


Download Publications of Los Alamos Research Book in PDF, Epub and Kindle