Microstructure generation and micromechanical modeling of sheet molding compound composites

Microstructure generation and micromechanical modeling of sheet molding compound composites
Author: Görthofer, Johannes
Publisher: KIT Scientific Publishing
Total Pages: 258
Release: 2022-09-13
Genre: Technology & Engineering
ISBN: 373151205X


Download Microstructure generation and micromechanical modeling of sheet molding compound composites Book in PDF, Epub and Kindle

Wir präsentieren einen Algorithmus zur schnellen Erzeugung von SMC Mikrostrukturen hoher Güte, durch Verwendung einer exakten Schließung und eines quasi-zufälligen Samplings. Darüber hinaus stellen wir ein modulares Framework zur Modellierung anisotroper Schädigung vor. Unser Konzept der Extraktionstensoren und Schädigungsfunktionen ermöglicht die Beschreibung komplexer Vorgänge. Darüber hinaus schlagen wir einen ganzheitlichen Multiskalenansatz zur Bestimmung anisotroper Versagenskriterien vor. - We introduce an algorithm that allows for a fast generation of SMC composite microstructures. An exact closure approximation and a quasi-random orientation sampling ensure high fidelity. Furthermore, we present a modular framework for anisotropic damage evolution. Our concept of extraction tensors and damage-hardening functions enables the description of complex damage-degradation. In addition, we propose a holistic multiscale approach for constructing anisotropic failure criteria.

Microstructure modeling and crystal plasticity parameter identification for predicting the cyclic mechanical behavior of polycrystalline metals

Microstructure modeling and crystal plasticity parameter identification for predicting the cyclic mechanical behavior of polycrystalline metals
Author: Kuhn, Jannick
Publisher: KIT Scientific Publishing
Total Pages: 224
Release: 2023-04-04
Genre: Technology & Engineering
ISBN: 3731512726


Download Microstructure modeling and crystal plasticity parameter identification for predicting the cyclic mechanical behavior of polycrystalline metals Book in PDF, Epub and Kindle

Computational homogenization permits to capture the influence of the microstructure on the cyclic mechanical behavior of polycrystalline metals. In this work we investigate methods to compute Laguerre tessellations as computational cells of polycrystalline microstructures, propose a new method to assign crystallographic orientations to the Laguerre cells and use Bayesian optimization to find suitable parameters for the underlying micromechanical model from macroscopic experiments.

Thermomechanical Modeling and Experimental Characterization of Sheet Molding Compound Composites

Thermomechanical Modeling and Experimental Characterization of Sheet Molding Compound Composites
Author: Lang, Juliane
Publisher: KIT Scientific Publishing
Total Pages: 250
Release: 2023-06-28
Genre:
ISBN: 3731512327


Download Thermomechanical Modeling and Experimental Characterization of Sheet Molding Compound Composites Book in PDF, Epub and Kindle

The aim of this work is to model and experimentally characterize the anisotropic material behavior of SMC composites on the macroscale with consideration of the microstructure. Temperature-dependent thermoelastic behavior and failure behavior are modeled and the corresponding material properties are determined experimentally. Additionally, experimental biaxial damage investigations are performed. A parameter identification merges modeling and experiments and validates the models.

Fiber Orientation Tensors and Mean Field Homogenization: Application to Sheet Molding Compound

Fiber Orientation Tensors and Mean Field Homogenization: Application to Sheet Molding Compound
Author: Bauer, Julian Karl
Publisher: KIT Scientific Publishing
Total Pages: 252
Release: 2023-02-27
Genre: Technology & Engineering
ISBN: 3731512629


Download Fiber Orientation Tensors and Mean Field Homogenization: Application to Sheet Molding Compound Book in PDF, Epub and Kindle

Effective mechanical properties of fiber-reinforced composites strongly depend on the microstructure, including the fibers' orientation. Studying this dependency, we identify the variety of fiber orientation tensors up to fourth-order using irreducible tensors and material symmetry. The case of planar fiber orientation tensors, relevant for sheet molding compound, is presented completely. Consequences for the reconstruction of fiber distributions and mean field homogenization are presented.

Thermomechanical Mean-Field Modeling and Experimental Characterization of Long Fiber-Reinforced Sheet Molding Compound Composites

Thermomechanical Mean-Field Modeling and Experimental Characterization of Long Fiber-Reinforced Sheet Molding Compound Composites
Author: Kehrer, Maria Loredana
Publisher: KIT Scientific Publishing
Total Pages: 204
Release: 2019-06-13
Genre: Technology & Engineering
ISBN: 3731509245


Download Thermomechanical Mean-Field Modeling and Experimental Characterization of Long Fiber-Reinforced Sheet Molding Compound Composites Book in PDF, Epub and Kindle

A discontinuous fiber-reinforced thermoset material produced by the Sheet Molding Compound process is investigated. Due to the process-related fiber orientation distribution, a composite with an anisotropic microstructure is created which crucially affects the mechanical properties. The central objectives are the modeling of the thermoelastic behavior of the composite accounting for the underlying microstructure, and the experimental characterization of the pure resin and the composite material.

Deep material networks for efficient scale-bridging in thermomechanical simulations of solids

Deep material networks for efficient scale-bridging in thermomechanical simulations of solids
Author: Gajek, Sebastian
Publisher: KIT Scientific Publishing
Total Pages: 326
Release: 2023-08-25
Genre:
ISBN: 3731512785


Download Deep material networks for efficient scale-bridging in thermomechanical simulations of solids Book in PDF, Epub and Kindle

We investigate deep material networks (DMN). We lay the mathematical foundation of DMNs and present a novel DMN formulation, which is characterized by a reduced number of degrees of freedom. We present a efficient solution technique for nonlinear DMNs to accelerate complex two-scale simulations with minimal computational effort. A new interpolation technique is presented enabling the consideration of fluctuating microstructure characteristics in macroscopic simulations.

Thermomechanical Mean-Field Modeling and Experimental Characterization of Long Fiber-Reinforced Sheet Molding Compound Composites

Thermomechanical Mean-Field Modeling and Experimental Characterization of Long Fiber-Reinforced Sheet Molding Compound Composites
Author: Maria Loredana Kehrer
Publisher: Saint Philip Street Press
Total Pages: 0
Release: 2020-10-09
Genre: Technology & Engineering
ISBN: 9781013281945


Download Thermomechanical Mean-Field Modeling and Experimental Characterization of Long Fiber-Reinforced Sheet Molding Compound Composites Book in PDF, Epub and Kindle

A discontinuous fiber-reinforced thermoset material produced by the Sheet Molding Compound process is investigated. Due to the process-related fiber orientation distribution, a composite with an anisotropic microstructure is created which crucially affects the mechanical properties. The central objectives are the modeling of the thermoelastic behavior of the composite accounting for the underlying microstructure, and the experimental characterization of the pure resin and the composite material. This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.

A computational multi-scale approach for brittle materials

A computational multi-scale approach for brittle materials
Author: Ernesti, Felix
Publisher: KIT Scientific Publishing
Total Pages: 264
Release: 2023-04-17
Genre: Technology & Engineering
ISBN: 3731512858


Download A computational multi-scale approach for brittle materials Book in PDF, Epub and Kindle

Materials of industrial interest often show a complex microstructure which directly influences their macroscopic material behavior. For simulations on the component scale, multi-scale methods may exploit this microstructural information. This work is devoted to a multi-scale approach for brittle materials. Based on a homogenization result for free discontinuity problems, we present FFT-based methods to compute the effective crack energy of heterogeneous materials with complex microstructures.

Efficient fast Fourier transform-based solvers for computing the thermomechanical behavior of applied materials

Efficient fast Fourier transform-based solvers for computing the thermomechanical behavior of applied materials
Author: Wicht, Daniel
Publisher: KIT Scientific Publishing
Total Pages: 336
Release: 2022-10-11
Genre: Science
ISBN: 3731512203


Download Efficient fast Fourier transform-based solvers for computing the thermomechanical behavior of applied materials Book in PDF, Epub and Kindle

The mechanical behavior of many applied materials arises from their microstructure. Thus, to aid the design, development and industrialization of new materials, robust computational homogenization methods are indispensable. The present thesis is devoted to investigating and developing FFT-based micromechanics solvers for efficiently computing the (thermo)mechanical response of nonlinear composite materials with complex microstructures.

Micromechanical modeling of short-fiber reinforced composites

Micromechanical modeling of short-fiber reinforced composites
Author: Mueller, Viktor
Publisher: KIT Scientific Publishing
Total Pages: 166
Release: 2016-06-16
Genre: Technology (General)
ISBN: 3731504545


Download Micromechanical modeling of short-fiber reinforced composites Book in PDF, Epub and Kindle

This work is focused on the prediction of elastic behavior of short-fiber reinforced composites by mean-field homogenization methods, which account for experimentally determined and artificially constructed microstructure data in discrete and averaged form. The predictions are compared with experimental measurements and a full-field voxel-based approach. It is investigated, whether the second-order orientation tensor delivers a sufficient microstructure description for such predictions.