Ionization Injection Plasma Wakefield Acceleration

Ionization Injection Plasma Wakefield Acceleration
Author: Yunfeng Xi
Publisher:
Total Pages: 120
Release: 2016
Genre:
ISBN:


Download Ionization Injection Plasma Wakefield Acceleration Book in PDF, Epub and Kindle

Plasma-based acceleration, either driven by laser (LWFA) or driven by electron beam (PWFA) has the potential of accelerating electrons to GeV in a few cen- timeters. This allows construction of table-top accelerator which can be applied to build light source such as free electron laser (FEL) or high energy particle collider. The driver bunch loses energy to plasma when driving a wake. The following wit- ness bunch injected at correct phase will be accelerated. Here we report a novel injection scheme, laser-ionization injection where the witness bunch is formed by laser-ionizing higher-threshold gas such as He. Simulation and numerical calcula- tion is presented to evaluate the beam quality, the beam emittance is estimated to be 10 8 mrad. Experimental key issues such as timing synchronization of laser pulse and electron bunch and eliminate "dark current" are taken care of before the plasma acceleration experiment is carried out. Two beams are synchronized to 100-fs level via plasma radiation observation and Electro-Optic Sampling (EOS). "Dark current" is reduced to trivial level by tuning plasma density and driver bunch configuration. We observed 1 GeV gain of witness bunch with 5% energy spread.

Phase Space Dynamics in Plasma Based Wakefield Acceleration

Phase Space Dynamics in Plasma Based Wakefield Acceleration
Author: Xinlu Xu
Publisher: Springer Nature
Total Pages: 138
Release: 2020-01-02
Genre: Science
ISBN: 9811523819


Download Phase Space Dynamics in Plasma Based Wakefield Acceleration Book in PDF, Epub and Kindle

This book explores several key issues in beam phase space dynamics in plasma-based wakefield accelerators. It reveals the phase space dynamics of ionization-based injection methods by identifying two key phase mixing processes. Subsequently, the book proposes a two-color laser ionization injection scheme for generating high-quality beams, and assesses it using particle-in-cell (PIC) simulations. To eliminate emittance growth when the beam propagates between plasma accelerators and traditional accelerator components, a method using longitudinally tailored plasma structures as phase space matching components is proposed. Based on the aspects above, a preliminary design study on X-ray free-electron lasers driven by plasma accelerators is presented. Lastly, an important type of numerical noise—the numerical Cherenkov instabilities in particle-in-cell codes—is systematically studied.

LASER WAKEFIELD ACCELERATION BEYOND 1 GeV USING IONIZATION INDUCED INJECTION*

LASER WAKEFIELD ACCELERATION BEYOND 1 GeV USING IONIZATION INDUCED INJECTION*
Author:
Publisher:
Total Pages: 7
Release: 2011
Genre:
ISBN:


Download LASER WAKEFIELD ACCELERATION BEYOND 1 GeV USING IONIZATION INDUCED INJECTION* Book in PDF, Epub and Kindle

A series of laser wake field accelerator experiments leading to electron energy exceeding 1 GeV are described. Theoretical concepts and experimental methods developed while conducting experiments using the 10 TW Ti:Sapphire laser at UCLA were implemented and transferred successfully to the 100 TW Callisto Laser System at the Jupiter Laser Facility at LLNL. To reach electron energies greater than 1 GeV with current laser systems, it is necessary to inject and trap electrons into the wake and to guide the laser for more than 1 cm of plasma. Using the 10 TW laser, the physics of self-guiding and the limitations in regards to pump depletion over cm-scale plasmas were demonstrated. Furthermore, a novel injection mechanism was explored which allows injection by ionization at conditions necessary for generating electron energies greater than a GeV. The 10 TW results were followed by self-guiding at the 100 TW scale over cm plasma lengths. The energy of the self-injected electrons, at 3 x 1018 cm−3 plasma density, was limited by dephasing to 720 MeV. Implementation of ionization injection allowed extending the acceleration well beyond a centimeter and 1.4 GeV electrons were measured.

An Exploration on Electron Bunching of Ionization Induced Self-injection in Laser Wakefield Accelerators

An Exploration on Electron Bunching of Ionization Induced Self-injection in Laser Wakefield Accelerators
Author: Deyun Li (M.A.)
Publisher:
Total Pages: 84
Release: 2016
Genre:
ISBN:


Download An Exploration on Electron Bunching of Ionization Induced Self-injection in Laser Wakefield Accelerators Book in PDF, Epub and Kindle

Plasma-based wakefield accelerator is attractive for generating quasi-monoenergetic electron beams using the bubble regime. The bubble is formed by an intense driver, which propagates through the plasma and expels all electrons transversely, creating a cavity free of cold plasma electrons that trailing behind the driver. Self-injection is applicable in the bubble regime, which can produce bunches of quasi-monoenergetic electrons. (1) Such electron bunching structure can be diagnosed with coherent transition radiation and may be exploited to generate powerful high frequency radiation [16].This thesis focuses on electron bunching phenomenon through WAKE simulations and theoretical analysis. The simulation is completed under laser-driven field ionization wakefield acceleration. The code is improved by taking into consideration the high frequency property of laser driver in wakefield acceleration. Finer grid size is introduced to the ionization injection part of WAKE, for increasing simulation accuracy without much sacrifice of programming efficiency. Various conditions for optimal bunching in the trapped electrons are explored computationally and analytically.

Experimental Investigations of Beam Driven Plasma Wakefield Accelerators

Experimental Investigations of Beam Driven Plasma Wakefield Accelerators
Author: Navid Vafaei-Najafabadi
Publisher:
Total Pages: 156
Release: 2016
Genre:
ISBN:


Download Experimental Investigations of Beam Driven Plasma Wakefield Accelerators Book in PDF, Epub and Kindle

A plasma wakefield accelerator (PWFA) uses a plasma wave (a wake) to accelerate electrons at a gradient that is three orders of magnitude higher than that of a conventional accelerator. When the plasma wave is driven by a high-density particle beam or a high-intensity laser pulse, it evolves into the nonlinear blowout regime, where the driver expels the background plasma electrons, resulting in an ion cavity forming behind the driver. This ion cavity has ideal properties for accelerating and focusing electrons. One method to insert electrons into this highly-relativistic, transient structure is by ionization injection. In this method, electrons resulting from further ionization of the ions inside the wake are trapped and accelerated by the wakefield. These injected electrons absorb the energy of the wake, resulting in a reduced accelerating field amplitude; this phenomenon is known as beam loading. This thesis discusses experiments that demonstrate how ionization injection can, on the one hand, lead to excessive beam loading and be a detriment to a PWFA, while on the other hand, it may be taken advantage of to produce bright electron beams that will be necessary for applications of a PWFA to a free electron laser (FEL) or a collider. These experiments were part of the FACET Campaign at the SLAC National Accelerator Laboratory and used FACET's 3 nC, 20.35 GeV electron beam to field ionize the plasma source and drive a wake. In the first experiment, the plasma source was a 30 cm column of rubidium (Rb) vapor. The low ionization potential and high atomic mass of Rb made it a suitable candidate as a plasma source for a PWFA. However, the low ionization potential of the Rb+ ion resulted in continuous ionization of Rb+ and injection of electrons along the length of the plasma. This resulted in heavy beam-loading, which reduced the strength of the accelerating field by half, making the Rb source unusable for a PWFA. In the second experiment, the plasma source was a column of lithium (Li) vapor bound by cold helium (He) gas. Here, the ionization injection of He electrons in the 10 cm boundary region between Li and He led to localized beam loading and resulted in an accelerated electron beam with high energy (32 GeV), a 10% energy spread, and an emittance an order of magnitude smaller than the drive beam. Particle-in-cell simulations indicate that the beam loading can be further optimized by reducing the injection region even more, which can lead to bright, high-current, low-energy-spread electron beams.

Challenges and Goals for Accelerators in the XXI Century

Challenges and Goals for Accelerators in the XXI Century
Author: Oliver Brning
Publisher: World Scientific
Total Pages: 855
Release: 2015
Genre: Science
ISBN: 9814436402


Download Challenges and Goals for Accelerators in the XXI Century Book in PDF, Epub and Kindle

"The past 100 years of accelerator-based research have led the field from first insights into the structure of atoms to the development and confirmation of the Standard Model of physics. Accelerators have been a key tool in developing our understanding of the elementary particles and the forces that govern their interactions. This book describes the past 100 years of accelerator development with a special focus on the technological advancements in the field, the connection of the various accelerator projects to key developments and discoveries in the Standard Model, how accelerator technologies open the door to other applications in medicine and industry, and finally presents an outlook of future accelerator projects for the coming decades."--Provided by publisher.

Modeling Self-Ionized Plasma Wakefield Acceleration for Afterburner Parameters Using QuickPIC.

Modeling Self-Ionized Plasma Wakefield Acceleration for Afterburner Parameters Using QuickPIC.
Author:
Publisher:
Total Pages: 3
Release: 2006
Genre:
ISBN:


Download Modeling Self-Ionized Plasma Wakefield Acceleration for Afterburner Parameters Using QuickPIC. Book in PDF, Epub and Kindle

For the parameters envisaged in possible afterburner stages[1] of a plasma wakefield accelerator (PWFA), the self-fields of the particle beam can be intense enough to tunnel ionize some neutral gases. Tunnel ionization has been investigated as a way for the beam itself to create the plasma, and the wakes generated may differ from those generated in pre-ionized plasmas[2], [3]. However, it is not practical to model the whole stage of PWFA with afterburner parameters using the models described in [2] and [3]. Here we describe the addition of a tunnel ionization package using the ADK model into QuickPIC, a highly efficient quasi-static particle in cell (PIC) code which can model a PWFA with afterburner parameters. Comparison between results from OSIRIS (a full PIC code with ionization) and from QuickPIC with the ionization package shows good agreement. Preliminary results using parameters relevant to the E164X experiment and the upcoming E167 experiment at SLAC are shown.

Theory and Design of Charged Particle Beams

Theory and Design of Charged Particle Beams
Author: Martin Reiser
Publisher: John Wiley & Sons
Total Pages: 634
Release: 2008-09-26
Genre: Science
ISBN: 3527617639


Download Theory and Design of Charged Particle Beams Book in PDF, Epub and Kindle

Although particle accelerators are the book's main thrust, it offers a broad synoptic description of beams which applies to a wide range of other devices such as low-energy focusing and transport systems and high-power microwave sources. Develops material from first principles, basic equations and theorems in a systematic way. Assumptions and approximations are clearly indicated. Discusses underlying physics and validity of theoretical relationships, design formulas and scaling laws. Features a significant amount of recent work including image effects and the Boltzmann line charge density profiles in bunched beams.

Reviews Of Accelerator Science And Technology - Volume 9: Technology And Applications Of Advanced Accelerator Concepts

Reviews Of Accelerator Science And Technology - Volume 9: Technology And Applications Of Advanced Accelerator Concepts
Author: Alexander Wu Chao
Publisher: World Scientific
Total Pages: 344
Release: 2017-02-20
Genre: Science
ISBN: 9813209593


Download Reviews Of Accelerator Science And Technology - Volume 9: Technology And Applications Of Advanced Accelerator Concepts Book in PDF, Epub and Kindle

Since its invention in the 1920s, particle accelerators have made tremendous progress in accelerator science, technology and applications. However, the fundamental acceleration principle, namely, to apply an external radiofrequency (RF) electric field to accelerate charged particles, remains unchanged. As this method (either room temperature RF or superconducting RF) is approaching its intrinsic limitation in acceleration gradient (measured in MeV/m), it becomes apparent that new methods with much higher acceleration gradient (measured in GeV/m) must be found for future very high energy accelerators as well as future compact (table-top or room-size) accelerators. This volume introduces a number of advanced accelerator concepts (AAC) — their principles, technologies and potential applications. For the time being, none of them stands out as a definitive direction in which to go. But these novel ideas are in hot pursuit and look promising. Furthermore, some AAC requires a high power laser system. This has the implication of bringing two different communities — accelerator and laser — to join forces and work together. It will have profound impact on the future of our field.Also included are two special articles, one on 'Particle Accelerators in China' which gives a comprehensive overview of the rapidly growing accelerator community in China. The other features the person-of-the-issue who was well-known nuclear physicist Jerome Lewis Duggan, a pioneer and founder of a huge community of industrial and medical accelerators in the US.

Direct Laser Acceleration in Laser Wakefield Accelerators

Direct Laser Acceleration in Laser Wakefield Accelerators
Author: Jessica Shaw
Publisher:
Total Pages: 132
Release: 2016
Genre:
ISBN:


Download Direct Laser Acceleration in Laser Wakefield Accelerators Book in PDF, Epub and Kindle

In this dissertation, the direct laser acceleration (DLA) of ionization-injected electrons in a laser wakefield accelerator (LWFA) operating in the quasi-blowout regime has been investigated through experiment and simulation. In the blowout regime of LWFA, the radiation pressure of an intense laser pulse can push a majority of the plasma electrons out and around the main body of the pulse. The expelled plasma electrons feel the electrostatic field of the relatively-stationary ions and are thus attracted back towards the laser axis behind the laser pulse where they overshoot the axis and set up a wake oscillation. When ionization injection is used, the inner-shell electrons of higher-Z dopant atoms are tunnel ionized near the peak of the laser pulse. Those electrons slip back relative to the wake until they gain enough energy from the longitudinal wakefield to become trapped. Those electrons that are trapped off-axis will undergo betatron oscillations in response to the linear transverse focusing force of the ions. Through experiments and supporting simulations, this dissertation demonstrates that when there is a significant overlap between the drive laser and the trapped electrons in a LWFA cavity, the accelerating electrons can gain energy from the DLA mechanism in addition to LWFA. When laser pulse overlaps the trapped electrons, the betatron oscillations of the electrons in the plane of the laser polarization can lead to an energy transfer from the transverse electric field of the laser to the transverse momentum of the electrons. This enhanced transverse momentum can then be converted into increased longitudinal momentum via the v x B force of the laser. This process is known as DLA. In this experimental work, the properties of the electron beams produced in a LWFA where the electrons are injected by ionization injection and become trapped without escaping the laser field have been investigated. The maximum measured energy of the produced electron beams scales with the overlap between the electrons and the laser. Undispersed electrons beams are observed to be elliptical in the plane of the laser polarization, and the energy spectrum splits into a fork at higher energies when the electrons beams are dispersed orthogonal to the direction of the laser polarization. These characteristic features are reproduced in particle-in-cell (PIC) code simulations where particle tracking was used to demonstrate that such spectral features are signatures of the presence of DLA in LWFA. Further PIC simulations comparing LWFA with and without DLA show that the presence of DLA can lead to electron beams that have maximum energies that exceed the estimates given by the theory for the ideal blowout regime. The magnitude of the contribution of DLA to the energy gained by the electron was found to be on the order of the LWFA contribution. In the LWFAs studied here, both DLA and LWFA participate in accelerating the bulk of the electrons in the produced electron beam. The presence of DLA in a LWFA can also lead to enhanced betatron oscillation amplitudes and increased divergence in the direction of the laser polarization.