Evaluation of Warm Mix Additives for Use in Modified Asphalt Mixtures

Evaluation of Warm Mix Additives for Use in Modified Asphalt Mixtures
Author: Corina Borroel Wong
Publisher:
Total Pages: 264
Release: 2011
Genre: Thesis
ISBN:


Download Evaluation of Warm Mix Additives for Use in Modified Asphalt Mixtures Book in PDF, Epub and Kindle

The intention of this research effort is to evaluate the use of warm mix additives with typical polymer-modified and terminal blend tire rubber asphalt mixtures from Nevada and California. The research effort is broken into three phases that are intended to evaluate the impacts of warm mix additives with typical polymer-modified and terminal blend tire rubber asphalt mixtures from Nevada and California: moisture damage, performance characteristics, and mechanistic analysis. In Phase I of this research effort, mixture resistance to moisture damage was evaluated using the indirect tensile test and the dynamic modulus at multiple freeze-thaw cycles. Laboratory testing was conducted to address the following: (1) the impact of warm mix additive and reduced production temperatures on the moisture damage resistance of asphalt mixtures, (2) the impact of residual aggregate moisture on the moisture damage resistance of WMA mixtures, (3) the impact of warm mix additives on the moisture damage resistance of anti-strip treated WMA mixtures, and (3) the impact of long-term aging on strength gain and the moisture damage resistance of WMA mixtures. A total of one aggregate source, four warm mix asphalt technologies (Advera, Sasobit, Revix and Foaming) and three asphalt binder types (neat, polymer-modified and terminal blend tire rubber modified asphalt binders) typically used in both Nevada and California are being evaluated in this study. This thesis will only summarize the test results and findings of the Phase I of the study for two warm-mix additives: Advera and Sasobit. The evaluation of the other two technologies (i.e. Revix and Foaming) as well as the Phase II testing are still in progress and have not been completed.

Evaluation of Warm Mix Additives for Use in Modified Asphalt Mixtures

Evaluation of Warm Mix Additives for Use in Modified Asphalt Mixtures
Author: Rukesh Maharjan
Publisher:
Total Pages: 332
Release: 2015
Genre: Electronic books
ISBN:


Download Evaluation of Warm Mix Additives for Use in Modified Asphalt Mixtures Book in PDF, Epub and Kindle

The purpose of this research effort was to evaluate the use of warm-mix additives with modified (polymer-modified and terminal blend tire rubber) asphalt mixtures from Nevada and California. This research was completed in two stages: Sasobit and Advera were evaluated in first stage while Evotherm and Foaming were evaluated in second stage. The three main components of the experimental plan include: evaluation of mixture resistivity to moisture damage, pavement performance characteristics of the mixtures, and mechanistic analysis of the mixtures for simulated flexible pavement. The moisture resistivity of all mixtures were checked by Indirect Tensile Strength (ITS), and Dynamic Modulus (E*) tests. Dynamic Modulus Ratio (ECR) and Tensile Strength Ratio (TSR) were computed at multiple Freeze-Thaw (F-T) cycles for further evaluation of moisture sensitivity of mixtures. Flow Number (FN) and Flexural beam fatigue tests were conducted to evaluate the performance characteristics of WMA additives/technology. The terminal blend tire rubber-modified binder with lime treatment works effectively in resisting moisture damage, rutting, and to significantly-reasonably improve the fatigue life of the WMA Evotherm, Foaming, Advera and Sasobit mixtures. Hence, it is the best solution for the design and construction of sustainable asphalt pavements. The use of terminal blend rubberized asphalt binder is an excellent and economical selection in reducing tire waste and environmental impacts.

Evaluation of Selected Warm Mix Asphalt Additives

Evaluation of Selected Warm Mix Asphalt Additives
Author:
Publisher:
Total Pages: 108
Release: 2010
Genre: Asphalt
ISBN:


Download Evaluation of Selected Warm Mix Asphalt Additives Book in PDF, Epub and Kindle

Warm mix asphalt (WMA) is an emerging technology that can allow asphalt to be produced and compacted at a significantly lower temperature. In the past, a number of researchers evaluated various WMA mixtures using select testing procedures in the laboratory. However, none of them evaluated all four major WMA products and compared them against both control HMA and WMA mixtures without an additive using a comprehensive set of testing protocols. This thesis presents a comprehensive evaluation result of four major WMA additives regarding their tensile strength, moisture sensitivity, dynamic modulus and flow number. The WMA specimens exhibited similar air voids as HMA specimens which indicate that WMA additives are effective in compacting asphalt mixtures at a lower temperature. The indirect tensile strengths and tensile strength ratio (TSR) values of all WMA specimens were lower than that of HMA specimens. This result indicates that WMA mixtures could be susceptible to moisture damage. The only WMA mixture with CECABSE RT® exhibited the higher dynamic modulus at 37.8°C than the control HMA mixture. All WMA specimens, except Advera WMA and CECABASE RT®, passed the requirement of 10,000 cycles of repeated loading. Particularly, the WMA mixture with granular Aspha-min® exhibited the lowest permanent deformation followed by the control HMA mixture. The nano-scale images of additives with asphalt were also taken to study the characterization and interaction of WMA additives with asphalt. A shape resembling bee was observed in all asphalt images which has been criticized by the researchers. However, bee structures were disappeared in those images of asphalt with CECABASE RT® additive. At nano-scale, height and phase angle of all additive were found greater than the asphalt which proves them highly viscous than the asphalt.

Performance Evaluation of Warm Mix Asphalt Mixtures Incorporating Reclaimed Asphalt Pavement

Performance Evaluation of Warm Mix Asphalt Mixtures Incorporating Reclaimed Asphalt Pavement
Author: Brian Hill
Publisher:
Total Pages:
Release: 2011
Genre:
ISBN:


Download Performance Evaluation of Warm Mix Asphalt Mixtures Incorporating Reclaimed Asphalt Pavement Book in PDF, Epub and Kindle

Sustainability is a cornerstone of today0́9s engineering world. Warm mix asphalt (WMA) and reclaimed asphalt pavement (RAP) are the most prominent sustainable materials in asphalt concrete pavements. WMA is a not a new concept, however new innovations and increased usage of WMA has been spurred by the increased focus on sustainable infrastructure systems. WMA enables reduced production temperatures through the use of wax, water, or other chemical packages. The effects of reduced production temperatures include fuel use and emissions reductions, improved compaction, and possible RAP concentration increases. RAP is the primary recycled product of the aged asphalt concrete pavements and its use leads to reductions in virgin aggregate and asphalt demand. However, significant performance issues can stem from the individual integration of WMA or RAP materials in asphalt concrete. In particular, WMA technologies can increase moisture and rutting susceptibility while RAP significantly increases the stiffness of the resulting mixture. Consequently, quality performance of sustainable asphalt pavements may require the combined use of WMA and RAP to produce mixtures with sufficient stiffness and moisture and fracture resistance. This study evaluates the potential of WMA technologies and their integration with RAP. Initially, an extensive literature review was completed to understand the advantages, disadvantages, and past field and lab performance of WMA and RAP mixtures. Rotational viscometer and bending beam rheometer tests were then used to evaluate Sasobit, Evotherm M1, and Advera WMA modified and unmodified binders. Finally, virgin and 45% RAP mixtures were designed and tested to examine the rutting, moisture, and fracture resistance of WMA and HMA mixtures. The results of this experiment provided several key observations. First, viscosity reductions may not be the primary cause for the availability of reduced production temperatures for WMA technologies. Second, WMA additive properties have a significant effect upon fracture, moisture, and rutting resistance. Furthermore, the addition of RAP to WMA mixtures improved the rutting and moisture sensitivity performance as characterized in the Hamburg and Tensile Strength Ratio testing procedures.

Superpave Mix Design

Superpave Mix Design
Author: Asphalt Institute
Publisher:
Total Pages: 102
Release: 2001-01-01
Genre: Asphalt
ISBN: 9781934154175


Download Superpave Mix Design Book in PDF, Epub and Kindle

Advances in Asphalt Materials

Advances in Asphalt Materials
Author: Shin-Che Huang
Publisher: Woodhead Publishing
Total Pages: 493
Release: 2015-04-08
Genre: Technology & Engineering
ISBN: 0081002718


Download Advances in Asphalt Materials Book in PDF, Epub and Kindle

The urgent need for infrastructure rehabilitation and maintenance has led to a rise in the levels of research into bituminous materials. Breakthroughs in sustainable and environmentally friendly bituminous materials are certain to have a significant impact on national economies and energy sustainability. This book will provide a comprehensive review on recent advances in research and technological developments in bituminous materials. Opening with an introductory chapter on asphalt materials and a section on the perspective of bituminous binder specifications, Part One covers the physiochemical characterisation and analysis of asphalt materials. Part Two reviews the range of distress (damage) mechanisms in asphalt materials, with chapters covering cracking, deformation, fatigue cracking and healing of asphalt mixtures, as well as moisture damage and the multiscale oxidative aging modelling approach for asphalt concrete. The final section of this book investigates alternative asphalt materials. Chapters within this section review such aspects as alternative binders for asphalt pavements such as bio binders and RAP, paving with asphalt emulsions and aggregate grading optimization. Provides an insight into advances and techniques for bituminous materials Comprehensively reviews the physicochemical characteristics of bituminous materials Investigate asphalt materials on the nano-scale, including how RAP/RAS materials can be recycled and how asphalt materials can self-heal and rejuvenator selection

Asphalt Materials Science and Technology

Asphalt Materials Science and Technology
Author: James G. Speight
Publisher: Butterworth-Heinemann
Total Pages: 652
Release: 2015-10-01
Genre: Technology & Engineering
ISBN: 0128005017


Download Asphalt Materials Science and Technology Book in PDF, Epub and Kindle

Asphalt is a complex but popular civil engineering material. Design engineers must understand these complexities in order to optimize its use. Whether or not it is used to pave a busy highway, waterproof a rooftop or smooth out an airport runway, Asphalt Materials Science and Technology acquaints engineers with the issues and technologies surrounding the proper selection and uses of asphalts. With this book in hand, researchers and engineering will find a valuable guide to the production, use and environmental aspect of asphalt. Covers the Nomenclature and Terminology for Asphalt including: Performance Graded (PG) Binders, Asphalt Cement (AC), Asphalt-Rubber (A-R) Binder, Asphalt Emulsion and Cutback Asphalt Includes Material Selection Considerations, Testing, and applications Biodegradation of Asphalt and environmental aspects of asphalt use