Computation of Viscous Incompressible Flows

Computation of Viscous Incompressible Flows
Author: Dochan Kwak
Publisher: Springer
Total Pages: 285
Release: 2010-11-25
Genre: Technology & Engineering
ISBN: 9789400701922


Download Computation of Viscous Incompressible Flows Book in PDF, Epub and Kindle

This monograph is intended as a concise and self-contained guide to practitioners and graduate students for applying approaches in computational fluid dynamics (CFD) to real-world problems that require a quantification of viscous incompressible flows. In various projects related to NASA missions, the authors have gained CFD expertise over many years by developing and utilizing tools especially related to viscous incompressible flows. They are looking at CFD from an engineering perspective, which is especially useful when working on real-world applications. From that point of view, CFD requires two major elements, namely methods/algorithm and engineering/physical modeling. As for the methods, CFD research has been performed with great successes. In terms of modeling/simulation, mission applications require a deeper understanding of CFD and flow physics, which has only been debated in technical conferences and to a limited scope. This monograph fills the gap by offering in-depth examples for students and engineers to get useful information on CFD for their activities. The procedural details are given with respect to particular tasks from the authors’ field of research, for example simulations of liquid propellant rocket engine subsystems, turbo-pumps and the blood circulations in the human brain as well as the design of artificial heart devices. However, those examples serve as illustrations of computational and physical challenges relevant to many other fields. Unlike other books on incompressible flow simulations, no abstract mathematics are used in this book. Assuming some basic CFD knowledge, readers can easily transfer the insights gained from specific CFD applications in engineering to their area of interest.

Efficient Solvers for Incompressible Flow Problems

Efficient Solvers for Incompressible Flow Problems
Author: Stefan Turek
Publisher: Springer Science & Business Media
Total Pages: 382
Release: 1999
Genre: Mathematics
ISBN: 9783540654339


Download Efficient Solvers for Incompressible Flow Problems Book in PDF, Epub and Kindle

This book discusses recent numerical and algorithmic tools for the solution of certain flow problems arising in Computational Fluid Dynamics (CFD), which are governed by the incompressible Navier-Stokes equations. It contains several of the latest results for the numerical solution of (complex) flow problems on modern computer platforms. Particular emphasis is put on the solution process of the resulting high dimensional discrete systems of equations which is often neglected in other works. Together with the included CD ROM which contains the complete FEATFLOW 1.1 software and parts of the "Virtual Album of Fluid Motion," which is a "Movie Gallery" with lots of MPED videos, the interested reader is enabled to perform his own numerical simulations or he may find numerous suggestions for improving his own computational simulations.

Numerical Simulation of Incompressible Viscous Flow

Numerical Simulation of Incompressible Viscous Flow
Author: Roland Glowinski
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 236
Release: 2022-09-20
Genre: Mathematics
ISBN: 3110785056


Download Numerical Simulation of Incompressible Viscous Flow Book in PDF, Epub and Kindle

This book on finite element-based computational methods for solving incompressible viscous fluid flow problems shows readers how to apply operator splitting techniques to decouple complicated computational fluid dynamics problems into a sequence of relatively simpler sub-problems at each time step, such as hemispherical cavity flow, cavity flow of an Oldroyd-B viscoelastic flow, and particle interaction in an Oldroyd-B type viscoelastic fluid. Efficient and robust numerical methods for solving those resulting simpler sub-problems are introduced and discussed. Interesting computational results are presented to show the capability of methodologies addressed in the book.

Computation of Viscous Incompressible Flows

Computation of Viscous Incompressible Flows
Author: Dochan Kwak
Publisher: Springer Science & Business Media
Total Pages: 294
Release: 2010-12-14
Genre: Technology & Engineering
ISBN: 9400701934


Download Computation of Viscous Incompressible Flows Book in PDF, Epub and Kindle

This monograph is intended as a concise and self-contained guide to practitioners and graduate students for applying approaches in computational fluid dynamics (CFD) to real-world problems that require a quantification of viscous incompressible flows. In various projects related to NASA missions, the authors have gained CFD expertise over many years by developing and utilizing tools especially related to viscous incompressible flows. They are looking at CFD from an engineering perspective, which is especially useful when working on real-world applications. From that point of view, CFD requires two major elements, namely methods/algorithm and engineering/physical modeling. As for the methods, CFD research has been performed with great successes. In terms of modeling/simulation, mission applications require a deeper understanding of CFD and flow physics, which has only been debated in technical conferences and to a limited scope. This monograph fills the gap by offering in-depth examples for students and engineers to get useful information on CFD for their activities. The procedural details are given with respect to particular tasks from the authors’ field of research, for example simulations of liquid propellant rocket engine subsystems, turbo-pumps and the blood circulations in the human brain as well as the design of artificial heart devices. However, those examples serve as illustrations of computational and physical challenges relevant to many other fields. Unlike other books on incompressible flow simulations, no abstract mathematics are used in this book. Assuming some basic CFD knowledge, readers can easily transfer the insights gained from specific CFD applications in engineering to their area of interest.

Computational Fluid Dynamics

Computational Fluid Dynamics
Author: Takeo Kajishima
Publisher: Springer
Total Pages: 364
Release: 2016-10-01
Genre: Technology & Engineering
ISBN: 3319453041


Download Computational Fluid Dynamics Book in PDF, Epub and Kindle

This textbook presents numerical solution techniques for incompressible turbulent flows that occur in a variety of scientific and engineering settings including aerodynamics of ground-based vehicles and low-speed aircraft, fluid flows in energy systems, atmospheric flows, and biological flows. This book encompasses fluid mechanics, partial differential equations, numerical methods, and turbulence models, and emphasizes the foundation on how the governing partial differential equations for incompressible fluid flow can be solved numerically in an accurate and efficient manner. Extensive discussions on incompressible flow solvers and turbulence modeling are also offered. This text is an ideal instructional resource and reference for students, research scientists, and professional engineers interested in analyzing fluid flows using numerical simulations for fundamental research and industrial applications.

Large-Scale Computation of Incompressible Viscous Flow by Least-Squares Finite Element Method

Large-Scale Computation of Incompressible Viscous Flow by Least-Squares Finite Element Method
Author: National Aeronautics and Space Adm Nasa
Publisher:
Total Pages: 26
Release: 2018-10-21
Genre:
ISBN: 9781729046852


Download Large-Scale Computation of Incompressible Viscous Flow by Least-Squares Finite Element Method Book in PDF, Epub and Kindle

The least-squares finite element method (LSFEM) based on the velocity-pressure-vorticity formulation is applied to large-scale/three-dimensional steady incompressible Navier-Stokes problems. This method can accommodate equal-order interpolations and results in symmetric, positive definite algebraic system which can be solved effectively by simple iterative methods. The first-order velocity-Bernoulli function-vorticity formulation for incompressible viscous flows is also tested. For three-dimensional cases, an additional compatibility equation, i.e., the divergence of the vorticity vector should be zero, is included to make the first-order system elliptic. The simple substitution of the Newton's method is employed to linearize the partial differential equations, the LSFEM is used to obtain discretized equations, and the system of algebraic equations is solved using the Jacobi preconditioned conjugate gradient method which avoids formation of either element or global matrices (matrix-free) to achieve high efficiency. To show the validity of this scheme for large-scale computation, we give numerical results for 2D driven cavity problem at Re = 10000 with 408 x 400 bilinear elements. The flow in a 3D cavity is calculated at Re = 100, 400, and 1,000 with 50 x 50 x 50 trilinear elements. The Taylor-Goertler-like vortices are observed for Re = 1,000. Jiang, Bo-Nan and Lin, T. L. and Povinelli, Louis A. Glenn Research Center NCC3-233; RTOP 505-62-21...