Digital Quantum Information Processing with Continuous-Variable Systems

Digital Quantum Information Processing with Continuous-Variable Systems
Author: Takaya Matsuura
Publisher: Springer Nature
Total Pages: 172
Release: 2023-02-06
Genre: Science
ISBN: 9811982880


Download Digital Quantum Information Processing with Continuous-Variable Systems Book in PDF, Epub and Kindle

The book provides theoretical methods of connecting discrete-variable quantum information processing to continuous-variable one. It covers the two major fields of quantum information processing, quantum communication and quantum computation, leading to achievement of a long-sought full security of continuous-variable quantum key distribution (QKD) and proposal of a resource-efficient method for optical quantum computing. Firstly, the book provides a security of continuous-variable QKD against arbitrary attacks under a realistic condition such as finite communication rounds and the use of digitized information processing. The book also provides the unified view for conventionally used approximate Gottesman-Kitaev-Preskill (GKP) codes, which encodes qudits on a continuous-variable system, enabling direct comparison between researches based on different approximations. The book finally proposes a resource-efficient method to realize the universal optical quantum computation using the GKP code via the direct preparation of the GKP magic state instead of GKP Pauli states. Feasibility of the proposed protocol is discussed based on the existing experimental proposals for the GKP state preparation.

Quantum Information with Continuous Variables

Quantum Information with Continuous Variables
Author: S.L. Braunstein
Publisher: Springer Science & Business Media
Total Pages: 419
Release: 2012-12-06
Genre: Science
ISBN: 9401512582


Download Quantum Information with Continuous Variables Book in PDF, Epub and Kindle

Quantum information may sound like science fiction but is, in fact, an active and extremely promising area of research, with a big dream: to build a quantum computer capable of solving problems that a classical computer could not even begin to handle. Research in quantum information science is now at an advanced enough stage for this dream to be credible and well-worth pursuing. It is, at the same time, too early to predict how quantum computers will be built, and what potential technologies will eventually strike gold in their ability to manipulate and process quantum information. One direction that has reaped many successes in quantum information processing relies on continuous variables. This area is bustling with theoretical and experimental achievements, from continuous-variable teleportation, to in-principle demonstrations of universal computation and efficient error correction. Now the time has come to compile some of the major results into one volume. In this book the leading researchers of the field present up-to-date developments of continuous-variable quantum information. This book is organized to suit many reader levels with introductions to every topic and in-depth discussions of theoretical and experimental results.

Quantum Information Processing and Quantum Error Correction

Quantum Information Processing and Quantum Error Correction
Author: Ivan Djordjevic
Publisher: Academic Press
Total Pages: 597
Release: 2012-04-16
Genre: Computers
ISBN: 0123854911


Download Quantum Information Processing and Quantum Error Correction Book in PDF, Epub and Kindle

Quantum Information Processing and Quantum Error Correction is a self-contained, tutorial-based introduction to quantum information, quantum computation, and quantum error-correction. Assuming no knowledge of quantum mechanics and written at an intuitive level suitable for the engineer, the book gives all the essential principles needed to design and implement quantum electronic and photonic circuits. Numerous examples from a wide area of application are given to show how the principles can be implemented in practice. This book is ideal for the electronics, photonics and computer engineer who requires an easy- to-understand foundation on the principles of quantum information processing and quantum error correction, together with insight into how to develop quantum electronic and photonic circuits. Readers of this book will be ready for further study in this area, and will be prepared to perform independent research. The reader completed the book will be able design the information processing circuits, stabilizer codes, Calderbank-Shor-Steane (CSS) codes, subsystem codes, topological codes and entanglement-assisted quantum error correction codes; and propose corresponding physical implementation. The reader completed the book will be proficient in quantum fault-tolerant design as well. Unique Features Unique in covering both quantum information processing and quantum error correction - everything in one book that an engineer needs to understand and implement quantum-level circuits. Gives an intuitive understanding by not assuming knowledge of quantum mechanics, thereby avoiding heavy mathematics. In-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits. Provides the right balance among the quantum mechanics, quantum error correction, quantum computing and quantum communication. Dr. Djordjevic is an Assistant Professor in the Department of Electrical and Computer Engineering of College of Engineering, University of Arizona, with a joint appointment in the College of Optical Sciences. Prior to this appointment in August 2006, he was with University of Arizona, Tucson, USA (as a Research Assistant Professor); University of the West of England, Bristol, UK; University of Bristol, Bristol, UK; Tyco Telecommunications, Eatontown, USA; and National Technical University of Athens, Athens, Greece. His current research interests include optical networks, error control coding, constrained coding, coded modulation, turbo equalization, OFDM applications, and quantum error correction. He presently directs the Optical Communications Systems Laboratory (OCSL) within the ECE Department at the University of Arizona. Provides everything an engineer needs in one tutorial-based introduction to understand and implement quantum-level circuits Avoids the heavy use of mathematics by not assuming the previous knowledge of quantum mechanics Provides in-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits

Quantum Information Processing with Diamond

Quantum Information Processing with Diamond
Author: Steven Prawer
Publisher: Elsevier
Total Pages: 367
Release: 2014-05-12
Genre: Science
ISBN: 0857096680


Download Quantum Information Processing with Diamond Book in PDF, Epub and Kindle

Diamond nitrogen vacancy (NV) color centers can transform quantum information science into practical quantum information technology, including fast, safe computing. Quantum Information Processing with Diamond looks at the principles of quantum information science, diamond materials, and their applications. Part one provides an introduction to quantum information processing using diamond, as well as its principles and fabrication techniques. Part two outlines experimental demonstrations of quantum information processing using diamond, and the emerging applications of diamond for quantum information science. It contains chapters on quantum key distribution, quantum microscopy, the hybridization of quantum systems, and building quantum optical devices. Part three outlines promising directions and future trends in diamond technologies for quantum information processing and sensing. Quantum Information Processing with Diamond is a key reference for R&D managers in industrial sectors such as conventional electronics, communication engineering, computer science, biotechnology, quantum optics, quantum mechanics, quantum computing, quantum cryptology, and nanotechnology, as well as academics in physics, chemistry, biology, and engineering. Brings together the topics of diamond and quantum information processing Looks at applications such as quantum computing, neural circuits, and in vivo monitoring of processes at the molecular scale

Optical Quantum Computers

Optical Quantum Computers
Author: Warit Asavanant
Publisher:
Total Pages: 224
Release: 2022
Genre: Science
ISBN: 9780735424050


Download Optical Quantum Computers Book in PDF, Epub and Kindle

This book is a current and rare treatment of the theoretical and experimental aspects of one of the most promising approaches to quantum computation-continuous-variable (CV) quantum computation using optical systems. In addition to its pedagogical value to those new to quantum computing, it is also a practical handbook for both experimentalists and theorists working in the field. Optical Quantum Computers: A Route to Practical Continuous Variable Quantum Information Processing summarizes many recent experimental developments and fills a gap in current literature. This timely book: -- Provides up-to-date discussions based on experiments and expertise of the scientists building quantum computers -- Centers around the idea of time-domain quantum computation -- Highlights work by the team from the Furusawa-Yoshikawa Laboratory at The University of Tokyo-one of the leading quantum computing labs in the world Researchers, graduate students, and those working in the quantum computing industry and its related fi elds will fi nd this an invaluable resource.

Optical Quantum Computers

Optical Quantum Computers
Author: Warit Asavanant
Publisher:
Total Pages: 0
Release: 2022
Genre:
ISBN: 9780735424043


Download Optical Quantum Computers Book in PDF, Epub and Kindle

Quantum Continuous Variables

Quantum Continuous Variables
Author: Alessio Serafini
Publisher: CRC Press
Total Pages: 362
Release: 2023-08-18
Genre: Science
ISBN: 1000920380


Download Quantum Continuous Variables Book in PDF, Epub and Kindle

Quantum Continuous Variables introduces the theory of continuous variable quantum systems, from its foundations based on the framework of Gaussian states to modern developments, including its applications to quantum information and forthcoming quantum technologies. This book addresses the theory of Gaussian states, operations, and dynamics in great depth and breadth, through a novel approach that embraces both the Hilbert space and phase descriptions. The second edition of this book has been revised throughout, and updated to include new topics, such as boson sampling, coherent feedback, nonlinear control, as well as several new solved problems. The volume includes coverage of entanglement theory and quantum information protocols, and their connection with relevant experimental set-ups. General techniques for non-Gaussian manipulations also emerge as the treatment unfolds and are demonstrated with specific case studies. This book will be of interest to graduate students looking to familiarise themselves with the field, in addition to experienced researchers eager to enhance their understanding of its theoretical methods. It will also appeal to experimentalists searching for a rigorous but accessible treatment of the theory in the area. Features Provides the first systematic graduate-level textbook for the field of quantum continuous variables and includes 77 problems for the reader, with accompanying solutions Explores applications to entanglement theory, nonlocality, quantum technologies and quantum control Describes, in detail, a comprehensive list of experimental platforms where the formalism applies Alessio Serafini earned his PhD from the University of Salerno. He is currently a Professor at University College London. His research focuses mainly on quantum optics, quantum information with continuous variables, and the theory of quantum control.

Quantum Information with Continuous Variables of Atoms and Light

Quantum Information with Continuous Variables of Atoms and Light
Author: N. J. Cerf
Publisher: World Scientific
Total Pages: 629
Release: 2007
Genre: Science
ISBN: 1860948162


Download Quantum Information with Continuous Variables of Atoms and Light Book in PDF, Epub and Kindle

Quantum information describes the new field which bridges quantum physics and information science. The quantum world allows for completely new architectures and protocols. While originally formulated in continuous quantum variables, the field worked almost exclusively with discrete variables, such as single photons and photon pairs. The renaissance of continuous variables came with European research consortia such as ACQUIRE (Advanced Coherent Quantum Information Research) in the late 1990s, and QUICOV (Quantum Information with Continuous Variables) from 2000OCo2003. The encouraging research results of QUICOV and the new conference series CVQIP (Continuous Variable Quantum Information Processing) triggered the idea for this book. This book presents the state of the art of quantum information with continuous quantum variables. The individual chapters discuss results achieved in QUICOV and presented at the first five CVQIP conferences from 2002OCo2006. Many world-leading scientists working on continuous variables outside Europe also contribute to the book.

Introduction to Optical Quantum Information Processing

Introduction to Optical Quantum Information Processing
Author: Pieter Kok
Publisher: Cambridge University Press
Total Pages: 504
Release: 2010-04-22
Genre: Science
ISBN: 9780521519144


Download Introduction to Optical Quantum Information Processing Book in PDF, Epub and Kindle

Quantum information processing offers fundamental improvements over classical information processing, such as computing power, secure communication, and high-precision measurements. However, the best way to create practical devices is not yet known. This textbook describes the techniques that are likely to be used in implementing optical quantum information processors. After developing the fundamental concepts in quantum optics and quantum information theory, the book shows how optical systems can be used to build quantum computers according to the most recent ideas. It discusses implementations based on single photons and linear optics, optically controlled atoms and solid-state systems, atomic ensembles, and optical continuous variables. This book is ideal for graduate students beginning research in optical quantum information processing. It presents the most important techniques of the field using worked examples and over 120 exercises.

Quantum Information Processing with Continuous Variables and Atomic Ensembles

Quantum Information Processing with Continuous Variables and Atomic Ensembles
Author: Marcin Zwierz
Publisher:
Total Pages:
Release: 2011
Genre:
ISBN:


Download Quantum Information Processing with Continuous Variables and Atomic Ensembles Book in PDF, Epub and Kindle

Quantum information theory promises many advances in science and technology. This thesis presents three different results in quantum information theory. The first result addresses the theoretical foundations of quantum metrology. It is now well known that quantum-enhanced metrology promises improved sensitivity in parameter estimation over classical measurement procedures. The Heisenberg limit is considered to be the ultimate limit in quantum metrology imposed by the laws of quantum mechanics. It sets a lower bound on how precisely a physical quantity can be measured given a certain amount of resources in any possible measurement. Recently, however, several measurement procedures have been proposed in which the Heisenberg limit seemed to be surpassed. This led to an extensive debate over the question how the sensitivity scales with the physical resources such as the average photon number and the computational resources such as the number of queries that are used in estimation procedures. Here, we reconcile the physical definition of the relevant resources used in parameter estimation with the information-theoretical scaling in terms of the query complexity of a quantum network. This leads to a novel and ultimate Heisenberg limit that applies to all conceivable measurement procedures. Our approach to quantum metrology not only resolves the mentioned paradoxical situations, but also strengths the connection between physics and computer science. A clear connection between physics and computer science is also present in other results. The second result reveals a close relationship between quantum metrology and the Deutsch-Jozsa algorithm over continuous-variable quantum systems. The Deutsch-Jozsa algorithm, being one of the first quantum algorithms, embodies the remarkable computational capabilities offered by quantum information processing. Here, we develop a general procedure, characterized by two parameters, that unifies parameter estimation and the Deutsch-Jozsa algorithm. Depending on which parameter we keep constant, the procedure implements either the parameter estimation protocol or the Deutsch-Jozsa algorithm. The procedure estimates a value of an unknown parameter with Heisenberg-limited precision or solves the Deutsch-Jozsa problem in a single run without the use of any entanglement. The third result illustrates how physical principles that govern interaction of light and matter can be efficiently employed to create a computational resource for a (one-way) quantum computer. More specifically, we demonstrate theoretically a scheme based on atomic ensembles and the dipole blockade mechanism for generation of the so-called cluster states in a single step. The entangling protocol requires nearly identical single-photon sources, one ultra-cold ensemble per physical qubit, and regular photo detectors. This procedure is significantly more efficient than any known robust probabilistic entangling operation.