Fault Tolerant Flight Control

Fault Tolerant Flight Control
Author: Christopher Edwards
Publisher: Springer
Total Pages: 589
Release: 2010-04-18
Genre: Technology & Engineering
ISBN: 3642116906


Download Fault Tolerant Flight Control Book in PDF, Epub and Kindle

Written by leading experts in the field, this book provides the state-of-the-art in terms of fault tolerant control applicable to civil aircraft. The book consists of five parts and includes online material.

Contribution to Fault Tolerant Flight Control Under Actuator Failures

Contribution to Fault Tolerant Flight Control Under Actuator Failures
Author: Lunlong Zhong
Publisher:
Total Pages: 0
Release: 2014
Genre:
ISBN:


Download Contribution to Fault Tolerant Flight Control Under Actuator Failures Book in PDF, Epub and Kindle

The objective of this thesis is to optimize the use of redundant actuators for a transportation aircraft once some actuators failure occurs during the flight. Here, the fault tolerant ability resulting from the redundant actuators is mainly considered. Different classical concepts and methods related to a fault tolerant flight control channel are first reviewed and new concepts useful for the required analysis are introduced. The problem which is tackled here is to develop a design methodology for fault tolerant flight control in the case of a partial actuator failure which will allow the aircraft to continue safely the intended maneuver. A two stages control approach is proposed and applied to both the remaining maneuverability evaluation and a fault tolerant control structure design. In the first case, an offline handling qualities assessment method based on Model Predictive Control is proposed. In the second case, a fault tolerant control structure based on Nonlinear Inverse Control and online actuator reassignment is developed. In both cases, a Linear Quadratic (LQ) programming problem is formulated and different failure cases are considered when an aircraft performs a classical maneuver. Three numerical solvers are studied and applied to the offline and online solutions of the resulting LQ problems.

Fault-tolerant Flight Control and Guidance Systems

Fault-tolerant Flight Control and Guidance Systems
Author: Guillaume J. J. Ducard
Publisher: Springer Science & Business Media
Total Pages: 268
Release: 2009-05-14
Genre: Technology & Engineering
ISBN: 1848825617


Download Fault-tolerant Flight Control and Guidance Systems Book in PDF, Epub and Kindle

This book offers a complete overview of fault-tolerant flight control techniques. Discussion covers the necessary equations for the modeling of small UAVs, a complete system based on extended Kalman filters, and a nonlinear flight control and guidance system.

Autonomous Safety Control of Flight Vehicles

Autonomous Safety Control of Flight Vehicles
Author: Xiang Yu
Publisher: CRC Press
Total Pages: 200
Release: 2021-02-12
Genre: Technology & Engineering
ISBN: 1000346129


Download Autonomous Safety Control of Flight Vehicles Book in PDF, Epub and Kindle

Aerospace vehicles are by their very nature a crucial environment for safety-critical systems. By virtue of an effective safety control system, the aerospace vehicle can maintain high performance despite the risk of component malfunction and multiple disturbances, thereby enhancing aircraft safety and the probability of success for a mission. Autonomous Safety Control of Flight Vehicles presents a systematic methodology for improving the safety of aerospace vehicles in the face of the following occurrences: a loss of control effectiveness of actuators and control surface impairments; the disturbance of observer-based control against multiple disturbances; actuator faults and model uncertainties in hypersonic gliding vehicles; and faults arising from actuator faults and sensor faults. Several fundamental issues related to safety are explicitly analyzed according to aerospace engineering system characteristics; while focusing on these safety issues, the safety control design problems of aircraft are studied and elaborated on in detail using systematic design methods. The research results illustrate the superiority of the safety control approaches put forward. The expected reader group for this book includes undergraduate and graduate students but also industry practitioners and researchers. About the Authors: Xiang Yu is a Professor with the School of Automation Science and Electrical Engineering, Beihang University, Beijing, China. His research interests include safety control of aerospace engineering systems, guidance, navigation, and control of unmanned aerial vehicles. Lei Guo, appointed as "Chang Jiang Scholar Chair Professor", is a Professor with the School of Automation Science and Electrical Engineering, Beihang University, Beijing, China. His research interests include anti-disturbance control and filtering, stochastic control, and fault detection with their applications to aerospace systems. Youmin Zhang is a Professor in the Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, Québec, Canada. His research interests include fault diagnosis and fault-tolerant control, and cooperative guidance, navigation, and control (GNC) of unmanned aerial/space/ground/surface vehicles. Jin Jiang is a Professor in the Department of Electrical & Computer Engineering, Western University, London, Ontario, Canada. His research interests include fault-tolerant control of safety-critical systems, advanced control of power plants containing non-traditional energy resources, and instrumentation and control for nuclear power plants.

A Closer Look at Fault-Tolerant Control

A Closer Look at Fault-Tolerant Control
Author: Jeremy M. Hutton
Publisher:
Total Pages: 348
Release: 2020
Genre: Technology & Engineering
ISBN: 9781536175295


Download A Closer Look at Fault-Tolerant Control Book in PDF, Epub and Kindle

"A Closer Look at Fault-Tolerant Control first presents the application of a fault tolerant control system on distillation processes, with automatic actuator faults containment capabilities and an atmospheric crude distillation unit. Following this, model-based fault-tolerant control and fault accommodation algorithms are presented for two challenging classes of distributed systems: a spatially distributed system that can be decomposed into interconnected subsystems, and a distributed parameter system where the system state is distributed over a continuous range of space. The authors present recent research on fault-tolerant control systems for unmanned aerial systems, particularly for multirotor-type vehicles commonly known as drones. An overview of tools for the analysis of the fundamental properties of an automated system is provided, allowing for any inherent redundancy in the controlled process to be utilised to maintain availability. Additionally, a reconfigurable fault-tolerant flight control system is proposed to combat sensor/actuator faults for autonomous underwater vehicles. The reconfigurable design and operation of complex systems is addressed, with emphasis on autonomous systems, building upon concepts of autonomy, incipient failure diagnosis and prognosis algorithms. The authors present a fault detection filter for induction motors speed as a class of nonlinear system in networked control systems subject to induced time delays. The multi-model approach for the modeling of induction motors is described using a set of linear models. In the concluding study, the construction of an induction motor is presented, and a review of induction motor failures is discussed"--

Fault Diagnosis and Reconfiguration in Flight Control Systems

Fault Diagnosis and Reconfiguration in Flight Control Systems
Author: C. Hajiyev
Publisher: Springer Science & Business Media
Total Pages: 361
Release: 2013-12-01
Genre: Technology & Engineering
ISBN: 1441991662


Download Fault Diagnosis and Reconfiguration in Flight Control Systems Book in PDF, Epub and Kindle

The problem of fault diagnosis and reconfigurable control is a new and actually developing field of science and engineering. The subject becomes more interesting since there is an increasing demand for the navigation and control systems of aerospace vehicles, automated actuators etc. to be more safe and reliable. Nowadays, the problems of fault detection and isolation and reconfigurable control attract the attention the scientists in the world. The subject is emphasized in the recent international congresses such as IF AC World Congresses (San Francisco-1996, Beijing-1999, and Barcelona-2002) and lMEKO World Congresses (Tampere-1997, Osaka-1999, Vienna-2000), and also in the international conferences on fault diagnosis such as SAFEPROCESS Conferences (Hull-1997, Budapest-2000). The presented methods in the book are based on linear and nonlinear dynamic mathematical models of the systems. Technical objects and systems stated by these models are very large, and include various control systems, actuators, sensors, computer systems, communication systems, and mechanical, hydraulic, pneumatic, electrical and electronic devices. The analytical fault diagnosis techniques of these objects have been developed for several decades. Many of those techniques are based on the use of the results of modem control theory. This is natural, because it is known that fault diagnosis process in control systems is considered as a part of general control process. xxii In organization of fault diagnosis of control systems, the use of the concepts and methods of modem control theory including concepts of state space, modeling, controllability, observability, estimation, identification, and filtering is very efficient.

Development and Evaluation of Fault-Tolerant Flight Control Systems

Development and Evaluation of Fault-Tolerant Flight Control Systems
Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
Total Pages: 36
Release: 2018-06-21
Genre:
ISBN: 9781721638833


Download Development and Evaluation of Fault-Tolerant Flight Control Systems Book in PDF, Epub and Kindle

The research is concerned with developing a new approach to enhancing fault tolerance of flight control systems. The original motivation for fault-tolerant control comes from the need for safe operation of control elements (e.g. actuators) in the event of hardware failures in high reliability systems. One such example is modem space vehicle subjected to actuator/sensor impairments. A major task in flight control is to revise the control policy to balance impairment detectability and to achieve sufficient robustness. This involves careful selection of types and parameters of the controllers and the impairment detecting filters used. It also involves a decision, upon the identification of some failures, on whether and how a control reconfiguration should take place in order to maintain a certain system performance level. In this project new flight dynamic model under uncertain flight conditions is considered, in which the effects of both ramp and jump faults are reflected. Stabilization algorithms based on neural network and adaptive method are derived. The control algorithms are shown to be effective in dealing with uncertain dynamics due to external disturbances and unpredictable faults. The overall strategy is easy to set up and the computation involved is much less as compared with other strategies. Computer simulation software is developed. A serious of simulation studies have been conducted with varying flight conditions. Song, Yong D. and Gupta, Kajal (Technical Monitor) Armstrong Flight Research Center