Sculptured Thin Films

Sculptured Thin Films
Author: Akhlesh Lakhtakia
Publisher: SPIE Press
Total Pages: 332
Release: 2005
Genre: Technology & Engineering
ISBN: 9780819456069


Download Sculptured Thin Films Book in PDF, Epub and Kindle

Sculptured thin films (STFs) are a class of nanoengineered materials with properties that can be designed and realized in a controllable manner using physical vapor deposition. This text, presented as a course at the SPIE Optical Science and Technology Symposium, couples detailed knowledge of thin-film morphology with the optical response characteristics of STF devices. An accompanying CD contains Mathematica programs for use with the presented formalisms. Thus, readers will learn to design and engineer STF materials and devices for future applications, particularly with optical applications. Graduate students in optics and practicing optical engineers will find the text valuable, as well as those interested in emerging nanotechnologies for optical devices.

Frontiers in Surface Nanophotonics

Frontiers in Surface Nanophotonics
Author: David L. Andrews
Publisher: Springer
Total Pages: 179
Release: 2007-08-23
Genre: Science
ISBN: 0387489517


Download Frontiers in Surface Nanophotonics Book in PDF, Epub and Kindle

This book explores the role of surface effects in optical phenomena in nanoscience, from two different perspectives. When systems are reduced in volume, the ratio of surface versus volume increases. At the level of single nanostructures this translates into an enhanced role of interfacial chemistry and thermodynamics. At the level of systems of nanostructures, it translates into larger density on interfaces, which in turn leads to such intriguing collective effects as plasmonics or multiple reflection and refraction phenomena. The book highlights both perspectives presenting sample applications. Without claiming to be exhaustive, the book aims to stimulate readers in this potentially rewarding field.

Introduction to Complex Mediums for Optics and Electromagnetics

Introduction to Complex Mediums for Optics and Electromagnetics
Author: Werner S. Weiglhofer
Publisher: SPIE Press
Total Pages: 800
Release: 2003
Genre: Science
ISBN: 9780819449474


Download Introduction to Complex Mediums for Optics and Electromagnetics Book in PDF, Epub and Kindle

Complex-mediums electromagnetics (CME) describes the study of electromagnetic fields in materials with complicated response properties. This truly multidisciplinary field commands the attentions of scientists from physics and optics to electrical and electronic engineering, from chemistry to materials science, to applied mathematics, biophysics, and nanotechnology. This book is a collection of essays to explain complex mediums for optical and electromagnetic applications. All contributors were requested to write with two aims: first, to educate; second, to provide a state-of-the-art review of a particular subtopic. The vast scope of CME exemplified by the actual materials covered in the essays should provide a plethora of opportunities to the novice and the initiated alike.

Glancing Angle Deposition of Thin Films

Glancing Angle Deposition of Thin Films
Author: Matthew M. Hawkeye
Publisher: John Wiley & Sons
Total Pages: 435
Release: 2014-07-03
Genre: Technology & Engineering
ISBN: 1118847334


Download Glancing Angle Deposition of Thin Films Book in PDF, Epub and Kindle

This book provides a highly practical treatment of Glancing Angle Deposition (GLAD), a thin film fabrication technology optimized to produce precise nanostructures from a wide range of materials. GLAD provides an elegant method for fabricating arrays of nanoscale helices, chevrons, columns, and other porous thin film architectures using physical vapour deposition processes such as sputtering or evaporation. The book gathers existing procedures, methodologies, and experimental designs into a single, cohesive volume which will be useful both as a ready reference for those in the field and as a definitive guide for those entering it. It covers: Development and description of GLAD techniques for nanostructuring thin films Properties and characterization of nanohelices, nanoposts, and other porous films Design and engineering of optical GLAD films including fabrication and testing, and chiral films Post-deposition processing and integration to optimize film behaviour and structure Deposition systems and requirements for GLAD fabrication A patent survey, extensive relevant literature, and a survey of GLAD's wide range of material properties and diverse applications.

Classical And Quantum Dynamics In Condensed Phase Simulations: Proceedings Of The International School Of Physics

Classical And Quantum Dynamics In Condensed Phase Simulations: Proceedings Of The International School Of Physics
Author: Bruce J Berne
Publisher: World Scientific
Total Pages: 881
Release: 1998-06-17
Genre: Science
ISBN: 9814496057


Download Classical And Quantum Dynamics In Condensed Phase Simulations: Proceedings Of The International School Of Physics Book in PDF, Epub and Kindle

The school held at Villa Marigola, Lerici, Italy, in July 1997 was very much an educational experiment aimed not just at teaching a new generation of students the latest developments in computer simulation methods and theory, but also at bringing together researchers from the condensed matter computer simulation community, the biophysical chemistry community and the quantum dynamics community to confront the shared problem: the development of methods to treat the dynamics of quantum condensed phase systems.This volume collects the lectures delivered there. Due to the focus of the school, the contributions divide along natural lines into two broad groups: (1) the most sophisticated forms of the art of computer simulation, including biased phase space sampling schemes, methods which address the multiplicity of time scales in condensed phase problems, and static equilibrium methods for treating quantum systems; (2) the contributions on quantum dynamics, including methods for mixing quantum and classical dynamics in condensed phase simulations and methods capable of treating all degrees of freedom quantum-mechanically.