Atomic-Scale Modelling of Electrochemical Systems

Atomic-Scale Modelling of Electrochemical Systems
Author: Marko M. Melander
Publisher: John Wiley & Sons
Total Pages: 372
Release: 2021-09-09
Genre: Science
ISBN: 1119605636


Download Atomic-Scale Modelling of Electrochemical Systems Book in PDF, Epub and Kindle

Atomic-Scale Modelling of Electrochemical Systems A comprehensive overview of atomistic computational electrochemistry, discussing methods, implementation, and state-of-the-art applications in the field The first book to review state-of-the-art computational and theoretical methods for modelling, understanding, and predicting the properties of electrochemical interfaces. This book presents a detailed description of the current methods, their background, limitations, and use for addressing the electrochemical interface and reactions. It also highlights several applications in electrocatalysis and electrochemistry. Atomic-Scale Modelling of Electrochemical Systems discusses different ways of including the electrode potential in the computational setup and fixed potential calculations within the framework of grand canonical density functional theory. It examines classical and quantum mechanical models for the solid-liquid interface and formation of an electrochemical double-layer using molecular dynamics and/or continuum descriptions. A thermodynamic description of the interface and reactions taking place at the interface as a function of the electrode potential is provided, as are novel ways to describe rates of heterogeneous electron transfer, proton-coupled electron transfer, and other electrocatalytic reactions. The book also covers multiscale modelling, where atomic level information is used for predicting experimental observables to enable direct comparison with experiments, to rationalize experimental results, and to predict the following electrochemical performance. Uniquely explains how to understand, predict, and optimize the properties and reactivity of electrochemical interfaces starting from the atomic scale Uses an engaging “tutorial style” presentation, highlighting a solid physicochemical background, computational implementation, and applications for different methods, including merits and limitations Bridges the gap between experimental electrochemistry and computational atomistic modelling Written by a team of experts within the field of computational electrochemistry and the wider computational condensed matter community, this book serves as an introduction to the subject for readers entering the field of atom-level electrochemical modeling, while also serving as an invaluable reference for advanced practitioners already working in the field.

Atomic-Scale Modelling of Electrochemical Systems

Atomic-Scale Modelling of Electrochemical Systems
Author: Marko M. Melander
Publisher: John Wiley & Sons
Total Pages: 372
Release: 2021-09-14
Genre: Science
ISBN: 111960561X


Download Atomic-Scale Modelling of Electrochemical Systems Book in PDF, Epub and Kindle

Atomic-Scale Modelling of Electrochemical Systems A comprehensive overview of atomistic computational electrochemistry, discussing methods, implementation, and state-of-the-art applications in the field The first book to review state-of-the-art computational and theoretical methods for modelling, understanding, and predicting the properties of electrochemical interfaces. This book presents a detailed description of the current methods, their background, limitations, and use for addressing the electrochemical interface and reactions. It also highlights several applications in electrocatalysis and electrochemistry. Atomic-Scale Modelling of Electrochemical Systems discusses different ways of including the electrode potential in the computational setup and fixed potential calculations within the framework of grand canonical density functional theory. It examines classical and quantum mechanical models for the solid-liquid interface and formation of an electrochemical double-layer using molecular dynamics and/or continuum descriptions. A thermodynamic description of the interface and reactions taking place at the interface as a function of the electrode potential is provided, as are novel ways to describe rates of heterogeneous electron transfer, proton-coupled electron transfer, and other electrocatalytic reactions. The book also covers multiscale modelling, where atomic level information is used for predicting experimental observables to enable direct comparison with experiments, to rationalize experimental results, and to predict the following electrochemical performance. Uniquely explains how to understand, predict, and optimize the properties and reactivity of electrochemical interfaces starting from the atomic scale Uses an engaging “tutorial style” presentation, highlighting a solid physicochemical background, computational implementation, and applications for different methods, including merits and limitations Bridges the gap between experimental electrochemistry and computational atomistic modelling Written by a team of experts within the field of computational electrochemistry and the wider computational condensed matter community, this book serves as an introduction to the subject for readers entering the field of atom-level electrochemical modeling, while also serving as an invaluable reference for advanced practitioners already working in the field.

Evaluating and Tuning Atomic-scale Interactions at Interfaces of Electrocatalytic and Electronic Materials Through First Principles Calculations

Evaluating and Tuning Atomic-scale Interactions at Interfaces of Electrocatalytic and Electronic Materials Through First Principles Calculations
Author: Ellen Anne Murray
Publisher:
Total Pages: 0
Release: 2020
Genre:
ISBN:


Download Evaluating and Tuning Atomic-scale Interactions at Interfaces of Electrocatalytic and Electronic Materials Through First Principles Calculations Book in PDF, Epub and Kindle

Almost every major challenge we face, from developing renewable energy technologies to designing faster and more efficient microelectronics, relies on our ability to design and manufacture new materials that address these challenges. Given the overwhelming amount of design considerations involved in creating these materials, theoretical atomistic modeling can provide key insights into the properties of materials that can be difficult or impossible to ascertain experimentally. Furthermore, the highly parallel nature of theoretical models allows us to rapidly screen for promising materials in a manner that is less time consuming and expensive than in a laboratory. By interfacing atomic-scale models with experiments, we can provide a holistic view of materials properties and effectively design new materials. In this thesis, we utilize density functional theory (DFT) to examine the catalytic properties of electronic materials on an atomic scale and develop models that allow us to relate nanoscale properties to macroscopic observables used in experiments. In particular, we utilize ab initio molecular dynamics (AIMD) to evaluate the catalytic properties the water/electrode interface for Au(100), Au(111), and Pt(111) catalysts towards the oxygen reduction reaction (ORR) in alkaline media. Our holistic approach demonstrates that the catalyst structure/composition, hydrogen bonding from water, and coverage effects from spectator species on the catalyst surface come together to determine the overall activity of these interfaces. Additionally, we present a high-throughput screening study for identifying improved metal-alloy catalysts with improved formic acid oxidation activity. Finally, we utilize DFT calculations to evaluate graphene nanoribbon growth on Ge(001) with a focus on characterizing the interactions between graphene and the Ge surface. This work provides several examples of how atomic-scale theoretical modeling can be applied to gain key insights into catalytic materials. We use a holistic approach to modeling a wide range of interactions in both electrocatalysts and electronic material systems to determine catalyst properties. In the end, we show that this approach helps us identify atomic interactions that are necessary to describe the properties of materials.

Solid-liquid Electrochemical Interfaces

Solid-liquid Electrochemical Interfaces
Author: Gregory Jerkiewicz
Publisher:
Total Pages: 378
Release: 1997
Genre: Science
ISBN:


Download Solid-liquid Electrochemical Interfaces Book in PDF, Epub and Kindle

The wide scope covered by the 23 papers makes the collection suitable as a survey of current developments in the subject, for specialists in electrochemical surface science, newcomers to the field, or scientists working in related disciplines. The topics include computer simulation of the structure and dynamics of water near metal surfaces, the growth kinetics of phosphate films on metal oxide surfaces, anion adsorption and charge transfer on single-crystal electrodes, an electrochemical and in-situ scanning-probe microscopic study of electroactive polymers, and the temperature dependence of the growth of surface oxide films on rhodium electrodes. Annotation copyrighted by Book News, Inc., Portland, OR.

Computational Electrochemistry

Computational Electrochemistry
Author: S. Paddison
Publisher: The Electrochemical Society
Total Pages: 49
Release: 2015-12-28
Genre: Science
ISBN: 1607686511


Download Computational Electrochemistry Book in PDF, Epub and Kindle

Computational Catalysis

Computational Catalysis
Author: Aravind Asthagiri
Publisher: Royal Society of Chemistry
Total Pages: 277
Release: 2014
Genre: Science
ISBN: 1849734518


Download Computational Catalysis Book in PDF, Epub and Kindle

This book presents a comprehensive review of the methods and approaches being adopted to push forward the boundaries of computational catalysis.

Chemical Bonding at Surfaces and Interfaces

Chemical Bonding at Surfaces and Interfaces
Author: Anders Nilsson
Publisher: Elsevier
Total Pages: 533
Release: 2011-08-11
Genre: Science
ISBN: 0080551912


Download Chemical Bonding at Surfaces and Interfaces Book in PDF, Epub and Kindle

Molecular surface science has made enormous progress in the past 30 years. The development can be characterized by a revolution in fundamental knowledge obtained from simple model systems and by an explosion in the number of experimental techniques. The last 10 years has seen an equally rapid development of quantum mechanical modeling of surface processes using Density Functional Theory (DFT). Chemical Bonding at Surfaces and Interfaces focuses on phenomena and concepts rather than on experimental or theoretical techniques. The aim is to provide the common basis for describing the interaction of atoms and molecules with surfaces and this to be used very broadly in science and technology. The book begins with an overview of structural information on surface adsorbates and discusses the structure of a number of important chemisorption systems. Chapter 2 describes in detail the chemical bond between atoms or molecules and a metal surface in the observed surface structures. A detailed description of experimental information on the dynamics of bond-formation and bond-breaking at surfaces make up Chapter 3. Followed by an in-depth analysis of aspects of heterogeneous catalysis based on the d-band model. In Chapter 5 adsorption and chemistry on the enormously important Si and Ge semiconductor surfaces are covered. In the remaining two Chapters the book moves on from solid-gas interfaces and looks at solid-liquid interface processes. In the final chapter an overview is given of the environmentally important chemical processes occurring on mineral and oxide surfaces in contact with water and electrolytes. Gives examples of how modern theoretical DFT techniques can be used to design heterogeneous catalysts This book suits the rapid introduction of methods and concepts from surface science into a broad range of scientific disciplines where the interaction between a solid and the surrounding gas or liquid phase is an essential component Shows how insight into chemical bonding at surfaces can be applied to a range of scientific problems in heterogeneous catalysis, electrochemistry, environmental science and semiconductor processing Provides both the fundamental perspective and an overview of chemical bonding in terms of structure, electronic structure and dynamics of bond rearrangements at surfaces

Simulation of Electrochemical Processes

Simulation of Electrochemical Processes
Author: C. A. Brebbia
Publisher: Witpress
Total Pages: 272
Release: 2005
Genre: Science
ISBN:


Download Simulation of Electrochemical Processes Book in PDF, Epub and Kindle

The 23 studies represent most of the presentations at the conference, which was called to gather researchers who have made significant contributions over recent years in modelling electrochemical processes used by engineers to protect structures against corrosion, to apply coatings and paints, and as a manufacturing process. They cover cathodic protection systems, modelling methodologies, electro-deposition and electro-forming, modelling coatings, and modelling stress corrosion cracking and corrosion fatigue. Among the topics are experimental versus computational system analysis, the time-dependent simulation of electrochemical machining under non- ideal conditions, and stress-corrosion in cold drawn pre-stressing steels. There is no subject index. The US office of WIT Press is Computational Mechanics. Annotation : 2005 Book News, Inc., Portland, OR (booknews.com).

Interfacial Electrochemistry

Interfacial Electrochemistry
Author: Wolfgang Schmickler
Publisher: Springer Science & Business Media
Total Pages: 273
Release: 2010-08-26
Genre: Science
ISBN: 3642049370


Download Interfacial Electrochemistry Book in PDF, Epub and Kindle

Electrochemistry is an old branch of physical chemistry. Due to the development of surface sensitive techniques, and a technological interest in fuel cells and batteries, it has recently undergone a rapid development. This textbook treats the field from a modern, atomistic point of view while integrating the older, macroscopic concepts. The increasing role of theory is reflected in the presentation of the basic ideas in a way that should appeal to experimentalists and theorists alike. Special care is taken to make the subject comprehensible to scientists from neighboring disciplines, especially from surface science. The book is suitable for an advanced course at the master or Ph.D. level, but should also be useful for practicing electrochemists, as well as to any scientist who wants to understand modern electrochemistry.