Ka-Band Wide-Bandgap Solid-State Power Amplifier

Ka-Band Wide-Bandgap Solid-State Power Amplifier
Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
Total Pages: 36
Release: 2018-06-24
Genre:
ISBN: 9781721816668


Download Ka-Band Wide-Bandgap Solid-State Power Amplifier Book in PDF, Epub and Kindle

Motivated by recent advances in wide-bandgap (WBG) gallium nitride (GaN) semiconductor technology, there is considerable interest in developing efficient solid-state power amplifiers (SSPAs) as an alternative to the traveling-wave tube amplifier (TWTA) for space applications. This article documents proof-of-concept hardware used to validate power-combining technologies that may enable a 120-W, 40 percent power-added efficiency (PAE) SSPA. Results in previous articles [1-3] indicate that architectures based on at least three power combiner designs are likely to enable the target SSPA. Previous architecture performance analyses and estimates indicate that the proposed architectures can power combine 16 to 32 individual monolithic microwave integrated circuits (MMICs) with >80 percent combining efficiency. This combining efficiency would correspond to MMIC requirements of 5- to 10-W output power and >48 percent PAE. In order to validate the performance estimates of the three proposed architectures, measurements of proof-of-concept hardware are reported here. Epp, L. and Khan, P. and Silva, A. Glenn Research Center; Jet Propulsion Laboratory IPN-PR-42-163

Ka-Band Wide-Bandgap Solid-State Power Amplifier

Ka-Band Wide-Bandgap Solid-State Power Amplifier
Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
Total Pages: 32
Release: 2018-06-24
Genre:
ISBN: 9781721818310


Download Ka-Band Wide-Bandgap Solid-State Power Amplifier Book in PDF, Epub and Kindle

Results of prototype hardware activities related to a 120-W, 32-GHz (Ka-band) solid-state power amplifier (SSPA) architecture study are presented. Spurious mode suppression and the power-handling capability of a prototype 24-way radial combiner and a prototype 2-way septum binary combiner were investigated. Experimental data indicate that a commercial absorptive filter, designed to pass the circular TE01 mode, effectively suppressed the higher-order modes generated by a narrowband, flower-petal-type mode transducer. However, the same filter was not effective in suppressing higher-order modes generated by the broadband Marie mode transducer that is used in the prototype waveguide radial combiner. Should greater filtering be required by a particular SSPA application, a broadband mode filter that can suppress specifically those higher-order modes that are generated by the Marie transducer will need to be developed. A back-to-back configuration of the prototype radial combiner was tested with drive power up to approximately 50 W. No anomalous behavior was observed. Power measurements of the septum combiner indicate that up to 10-W radio frequency (RF) can be dissipated in the integrated resistive element before a permanent performance shift is observed. Thus, a given adder (a single-stage, 2-way combiner) can safely combine two 20-W sources, and the adder will not be damaged in the event of a source failure. This result is used to calculate the maximum source power that can be safely combined as a function of the number of sources combined and the number of source failures allowed in a multi-stage combiner. The analysis shows that SSPA power >140 W can be generated by power combining 16 sources producing 10 W each. In this configuration, up to three sources could fail with the guarantee that the combiner would not be damaged. Finally, a modified prototype septum combiner design was verified. The improved design reduced the assembly time from over 2 hours to about 15

A Ka-Band Wide-Bandgap Solid-State Power Amplifier

A Ka-Band Wide-Bandgap Solid-State Power Amplifier
Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
Total Pages: 32
Release: 2018-06-24
Genre:
ISBN: 9781721816996


Download A Ka-Band Wide-Bandgap Solid-State Power Amplifier Book in PDF, Epub and Kindle

Motivated by recent advances in wide-bandgap (WBG) gallium nitride (GaN) semiconductor technology, there is considerable interest in developing efficient solidstate power amplifiers (SSPAs) as an alternative to the traveling-wave tube amplifier (TWTA) for space applications. This article documents the results of a study to investigate power-combining technology and SSPA architectures that can enable a 120-W, 40 percent power-added efficiency (PAE) SSPA. Results of the study indicate that architectures based on at least three power combiner designs are likely to enable the target SSPA. The proposed architectures can power combine 16 to 32 individual monolithic microwave integrated circuits (MMICs) with >80 percent combining efficiency. This corresponds to MMIC requirements of 5- to 10-W output power and >48 percent PAE. For the three proposed architectures [1], detailed analysis and design of the power combiner are presented. The first architecture studied is based on a 16-way septum combiner that offers low loss and high isolation over the design band of 31 to 36 GHz. Analysis of a 2-way prototype septum combiner had an input match >25 dB, output match >30 dB, insertion loss 30 dB over the design band. A 16-way design, based on cascading this combiner in a binary fashion, is documented. The second architecture is based on a 24-way waveguide radial combiner. A prototype 24-way radial base was analyzed to have an input match >30 dB (under equal excitation of all input ports). The match of the mode transducer that forms the output of a radial combiner was found to be >27 dB. The functional bandwidth of the radial base and mode transducer, which together will form a radial combiner/divider, exceeded the design band. The third architecture employs a 32-way, parallel-plate radial combiner. Simulation results indicated an input match >24 dB, output match >22 dB, insertion loss

Electromagnetic Fields and Waves

Electromagnetic Fields and Waves
Author: Kim Ho Yeap
Publisher: BoD – Books on Demand
Total Pages: 194
Release: 2019-05-15
Genre: Science
ISBN: 1789239559


Download Electromagnetic Fields and Waves Book in PDF, Epub and Kindle

In this book, a variety of topics related to electromagnetic fields and waves are extensively discussed. The topics encompass the physics of electromagnetic waves, their interactions with different kinds of media, and their applications and effects.

Solid-state Microwave High-power Amplifiers

Solid-state Microwave High-power Amplifiers
Author: Franco Sechi
Publisher: Artech House
Total Pages: 333
Release: 2009
Genre: Technology & Engineering
ISBN: 1596933208


Download Solid-state Microwave High-power Amplifiers Book in PDF, Epub and Kindle

This practical resource offers expert guidance on the most critical aspects of microwave power amplifier design. This comprehensive book provides descriptions of all the major active devices, discusses large signal characterization, explains all the key circuit design procedures. Moreover you gain keen insight on the link between design parameters and technological implementation, helping you achieve optimal solutions with the most efficient utilization of available technologies. The book covers a broad range of essential topics, from requirements for high-power amplifiers, device models, phase noise and power combiners... to high-efficiency amplifiers, linear amplifier design, bias circuits, and thermal design.

High Efficiency RF and Microwave Solid State Power Amplifiers

High Efficiency RF and Microwave Solid State Power Amplifiers
Author: Paolo Colantonio
Publisher: John Wiley & Sons
Total Pages: 514
Release: 2009-07-08
Genre: Technology & Engineering
ISBN: 9780470746554


Download High Efficiency RF and Microwave Solid State Power Amplifiers Book in PDF, Epub and Kindle

Do you want to know how to design high efficiency RF and microwave solid state power amplifiers? Read this book to learn the main concepts that are fundamental for optimum amplifier design. Practical design techniques are set out, stating the pros and cons for each method presented in this text. In addition to novel theoretical discussion and workable guidelines, you will find helpful running examples and case studies that demonstrate the key issues involved in power amplifier (PA) design flow. Highlights include: Clarification of topics which are often misunderstood and misused, such as bias classes and PA nomenclatures. The consideration of both hybrid and monolithic microwave integrated circuits (MMICs). Discussions of switch-mode and current-mode PA design approaches and an explanation of the differences. Coverage of the linearity issue in PA design at circuit level, with advice on low distortion power stages. Analysis of the hot topic of Doherty amplifier design, plus a description of advanced techniques based on multi-way and multi-stage architecture solutions. High Efficiency RF and Microwave Solid State Power Amplifiers is: an ideal tutorial for MSc and postgraduate students taking courses in microwave electronics and solid state circuit/device design; a useful reference text for practising electronic engineers and researchers in the field of PA design and microwave and RF engineering. With its unique unified vision of solid state amplifiers, you won’t find a more comprehensive publication on the topic.

Wide Bandgap Semiconductor Based Micro/Nano Devices

Wide Bandgap Semiconductor Based Micro/Nano Devices
Author: Jung-Hun Seo
Publisher: MDPI
Total Pages: 138
Release: 2019-04-25
Genre: Technology & Engineering
ISBN: 3038978426


Download Wide Bandgap Semiconductor Based Micro/Nano Devices Book in PDF, Epub and Kindle

While group IV or III-V based device technologies have reached their technical limitations (e.g., limited detection wavelength range or low power handling capability), wide bandgap (WBG) semiconductors which have band-gaps greater than 3 eV have gained significant attention in recent years as a key semiconductor material in high-performance optoelectronic and electronic devices. These WBG semiconductors have two definitive advantages for optoelectronic and electronic applications due to their large bandgap energy. WBG energy is suitable to absorb or emit ultraviolet (UV) light in optoelectronic devices. It also provides a higher electric breakdown field, which allows electronic devices to possess higher breakdown voltages. This Special Issue seeks research papers, short communications, and review articles that focus on novel synthesis, processing, designs, fabrication, and modeling of various WBG semiconductor power electronics and optoelectronic devices.

Wide Bandgap Based Devices

Wide Bandgap Based Devices
Author: Farid Medjdoub
Publisher: MDPI
Total Pages: 242
Release: 2021-05-26
Genre: Technology & Engineering
ISBN: 3036505660


Download Wide Bandgap Based Devices Book in PDF, Epub and Kindle

Emerging wide bandgap (WBG) semiconductors hold the potential to advance the global industry in the same way that, more than 50 years ago, the invention of the silicon (Si) chip enabled the modern computer era. SiC- and GaN-based devices are starting to become more commercially available. Smaller, faster, and more efficient than their counterpart Si-based components, these WBG devices also offer greater expected reliability in tougher operating conditions. Furthermore, in this frame, a new class of microelectronic-grade semiconducting materials that have an even larger bandgap than the previously established wide bandgap semiconductors, such as GaN and SiC, have been created, and are thus referred to as “ultra-wide bandgap” materials. These materials, which include AlGaN, AlN, diamond, Ga2O3, and BN, offer theoretically superior properties, including a higher critical breakdown field, higher temperature operation, and potentially higher radiation tolerance. These attributes, in turn, make it possible to use revolutionary new devices for extreme environments, such as high-efficiency power transistors, because of the improved Baliga figure of merit, ultra-high voltage pulsed power switches, high-efficiency UV-LEDs, and electronics. This Special Issue aims to collect high quality research papers, short communications, and review articles that focus on wide bandgap device design, fabrication, and advanced characterization. The Special Issue will also publish selected papers from the 43rd Workshop on Compound Semiconductor Devices and Integrated Circuits, held in France (WOCSDICE 2019), which brings together scientists and engineers working in the area of III–V, and other compound semiconductor devices and integrated circuits. In particular, the following topics are addressed: – GaN- and SiC-based devices for power and optoelectronic applications – Ga2O3 substrate development, and Ga2O3 thin film growth, doping, and devices – AlN-based emerging material and devices – BN epitaxial growth, characterization, and devices

Handbook of RF and Microwave Power Amplifiers

Handbook of RF and Microwave Power Amplifiers
Author: John L. B. Walker
Publisher: Cambridge University Press
Total Pages: 705
Release: 2012
Genre: Technology & Engineering
ISBN: 0521760100


Download Handbook of RF and Microwave Power Amplifiers Book in PDF, Epub and Kindle

This is a one-stop guide for circuit designers and system/device engineers, covering everything from CAD to reliability.