Wireless Communications for Power Substations: RF Characterization and Modeling

Wireless Communications for Power Substations: RF Characterization and Modeling
Author: Basile L. Agba
Publisher: Springer
Total Pages: 203
Release: 2018-06-08
Genre: Technology & Engineering
ISBN: 331991328X


Download Wireless Communications for Power Substations: RF Characterization and Modeling Book in PDF, Epub and Kindle

This book consists of the identification, characterization, and modeling of electromagnetic interferences in substations for the deployment of wireless sensor networks. The authors present in chapter 3 the measurement setup to record sequences of impulsive noise samples in the ISM band of interest. The setup can measure substation impulsive noise, in wide band, with enough samples per time window and enough precision to allow a statistical study of the noise. During the measurement campaign, the authors recorded around 120 noise sequences in different substations and for four ranges of equipment voltage, which are 25 kV, 230 kV, 315 kV and 735 kV. A characterization process is proposed, by which physical characteristics of partial discharge can be measured in terms of first- and second-order statistics. From the measurement campaign, the authors infer the characteristics of substation impulsive noise as a function of the substation equipment voltage, and can provide representative parameters for the four voltage ranges and for several existing impulsive noise models. The authors investigate in chapters 4 and 5 the modeling of electromagnetic interferences caused by partial discharge sources. First, the authors propose a complete and coherent approach model that links physical characteristics of high-voltage installations to the induced radio-interference spectra of partial discharge sources. The goodness-of-fit of the proposed physical model has been measured based on some interesting statistical metrics. This allows one to assess the effectiveness of the authors' approach in terms of first- and second-order statistics. Chapter 6 proposes a model based on statistical approach. Indeed, substation impulsive noise is composed of correlated impulses, which would require models with memory in order to replicate a similar correlation. Among different models, we have configured a Partitioned Markov Chain (PMC) with 19 states (one state for the background noise and 18 states for the impulse); this Markov-Gaussian model is able to generate impulsive noise with correlated impulse samples. The correlation is observable on the impulse duration and the power spectrum of the impulses. Our PMC model provides characteristics that are more similar to the characteristics of substation impulsive noise in comparison with other models, in terms of time and frequency response, as well as Probability Density Functions (PDF). Although PMC represents reliably substation impulsive noise, the model remains complex in terms of parameter estimation due to a large number of Markov states, which can be an obstacle for future wireless system design. In order to simplify the model, the authors decrease the number of states to 7 by assigning one state to the background noise and 6 states to the impulse and we call this model PMC-6. PMC-6 can generate realistic impulses and can be easily implemented in a receiver in order to mitigate substation impulsive noise. Representative parameters are provided in order to replicate substation impulsive noise for different voltage ranges (25-735 kV). Chapter 7, a generalized radio-noise model for substations is proposed, in which there are many discharges sources that are randomly distributed over space and time according to the Poisson field of interferers approach. This allows for the identification of some interesting statistical properties of moments, cumulants and probability distributions. These can, in turn, be utilized in signal processing algorithms for rapid partial discharge's identification, localization, and impulsive noise mitigation techniques in wireless communications in substations. The primary audience for this book is the electrical and power engineering industry, electricity providers and companies who are interested in substation automation systems using wireless communication technologies for smart grid applications. Researchers, engineers and students studying and working in wireless communication will also want to buy this book as a reference.

EM Modeling of Antennas and RF Components for Wireless Communication Systems

EM Modeling of Antennas and RF Components for Wireless Communication Systems
Author: Frank Gustrau
Publisher: Springer Science & Business Media
Total Pages: 287
Release: 2006-08-02
Genre: Technology & Engineering
ISBN: 3540286152


Download EM Modeling of Antennas and RF Components for Wireless Communication Systems Book in PDF, Epub and Kindle

This book focuses on practical computational electrodynamics, guiding the reader step-by-step through the modeling process from the initial "what question must the model answer?", through the setting up of a computer model, to post processing, validation and optimization. The book offers a realistic view of the capabilities and limits of current 3-D field simulators and how to apply this knowledge efficiently to EM analysis and design of RF applications in modern communication systems.

RF Technologies for Low Power Wireless Communications

RF Technologies for Low Power Wireless Communications
Author: Tatsuo Itoh
Publisher: John Wiley & Sons
Total Pages: 482
Release: 2004-04-07
Genre: Technology & Engineering
ISBN: 0471463922


Download RF Technologies for Low Power Wireless Communications Book in PDF, Epub and Kindle

A survey of microwave technology tailored for professionals in wireless communications RF Technologies for Low Power Wireless Communications updates recent developments in wireless communications from a hardware design standpoint and offers specialized coverage of microwave technology with a focus on the low power wireless units required in modern wireless systems. It explores results of recent research that focused on a holistic, integrated approach to the topics of materials, devices, circuits, modulation, and architectures rather than the more traditional approach of research into isolated topical areas. Twelve chapters deal with various fundamental research aspects of low power wireless electronics written by world-class experts in each field. The first chapter offers an overview of wireless architecture and performance, followed by detailed coverage of: Advanced GaAs-based HBT designs InP-based devices and circuits Si/SiGe HBT technology Noise in GaN devices Power amplifier architectures and nonlinearities Planar-oriented components MEMS and micromachined components Resonators, filters, and low-noise oscillators Antennas Transceiver front-end architectures With a clear focus and expert contributors, RF Technologies for Low Power Wireless Communications will be of interest to a wide range of electrical engineering disciplines working in wireless technologies.

RF and Microwave Engineering

RF and Microwave Engineering
Author: Frank Gustrau
Publisher: John Wiley & Sons
Total Pages: 374
Release: 2012-06-22
Genre: Technology & Engineering
ISBN: 1118349571


Download RF and Microwave Engineering Book in PDF, Epub and Kindle

This book provides a fundamental and practical introduction to radio frequency and microwave engineering and physical aspects of wireless communication In this book, the author addresses a wide range of radio-frequency and microwave topics with emphasis on physical aspects including EM and voltage waves, transmission lines, passive circuits, antennas, radio wave propagation. Up-to-date RF design tools like RF circuit simulation, EM simulation and computerized smith charts, are used in various examples to demonstrate how these methods can be applied effectively in RF engineering practice. Design rules and working examples illustrate the theoretical parts. The examples are close to real world problems, so the reader can directly transfer the methods within the context of their own work. At the end of each chapter a list of problems is given in order to deepen the reader’s understanding of the chapter material and practice the new competences. Solutions are available on the author’s website. Key Features: Presents a wide range of RF topics with emphasis on physical aspects e.g. EM and voltage waves, transmission lines, passive circuits, antennas Uses various examples of modern RF tools that show how the methods can be applied productively in RF engineering practice Incorporates various design examples using circuit and electromagnetic (EM) simulation software Discusses the propagation of waves: their representation, their effects, and their utilization in passive circuits and antenna structures Provides a list of problems at the end of each chapter Includes an accompanying website containing solutions to the problems (http:\\www.fh-dortmund.de\gustrau_rf_textbook) This will be an invaluable textbook for bachelor and masters students on electrical engineering courses (microwave engineering, basic circuit theory and electromagnetic fields, wireless communications). Early-stage RF practitioners, engineers (e.g. application engineer) working in this area will also find this book of interest.

Propagation Modeling for Wireless Communications

Propagation Modeling for Wireless Communications
Author: Indrakshi Dey
Publisher: CRC Press
Total Pages: 273
Release: 2022-05-03
Genre: Technology & Engineering
ISBN: 100058061X


Download Propagation Modeling for Wireless Communications Book in PDF, Epub and Kindle

This book introduces the various approaches and tools used for modelling different propagation environments and lays the foundation for developing a unified theoretical framework for future integrated communication networks. In the case of each type of network, the book uses basic concepts of physics, mathematics, geometry and probability theory to study the impact of the dimension and shape of the propagation environment and relative transmit-receive position on the information flow. The book provides an introduction into wireless communication systems and networks and their applications. For both systems and networks, the basic hard (encoder, modulator, etc.) and soft components (information, signal, etc.) are discussed through schematic block diagrams. Next each of the modes of communication, namely radio waves, acoustic waves, magnetic induction, optical waves, biological particles (molecules, aerosols, neural synapse etc.) and quantum field, are discussed. For each communication scenario presented, the impact of different environmental factors on the propagation phenomenon is articulated, followed by different channel modelling (deterministic, analytical, and stochastic) techniques that are used to characterize the propagation environment. Finally future trends in wireless communication networks are examined and envisioned for next generations 6G/7G of communication systems, like space information networks, sea-to-sky internet of vehicles, and internet of bio-nano things. Based on the future trends of integrated networks, the book drives the need for a generalized channel model irrespective of the media and mode of information transfer. The primary audience for the book is post-graduate students, researchers and academics in electronics and communications engineering, electrical engineering and computer science.

New Directions in Wireless Communications Research

New Directions in Wireless Communications Research
Author: Vahid Tarokh
Publisher: Springer Science & Business Media
Total Pages: 483
Release: 2009-08-19
Genre: Technology & Engineering
ISBN: 1441906738


Download New Directions in Wireless Communications Research Book in PDF, Epub and Kindle

New Directions in Wireless Communications Research addresses critical issues in the design and performance analysis of current and future wireless system design. Intended for use by system designers and academic researchers, the contributions are by acknowledged international leaders in their field. Topics covered include: (1) Characterization of wireless channels; (2) The principles and challenges of OFDM; (3) Low-correlation sequences for communications; (4) Resource allocation in wireless systems; (5) Signal processing for wireless systems, including iterative systems collaborative beamforming and interference rejection and network coding; (6) Multi-user and multiple input-multiple output (MIMO) communications; (7) Cooperative wireless networks, cognitive radio systems and coded bidirectional relaying in wireless networks; (8) Fourth generation standards such as LTE and WiMax and standard proposals such as UMB. With chapters from some of the leading researchers in the field, this book is an invaluable reference for those studying and practicing in the field of wireless communications. The book provides the most recent information on topics of current interest to the research community including topics such as sensor networks, coding for networks, cognitive networks and many more.

Multi-Mode / Multi-Band RF Transceivers for Wireless Communications

Multi-Mode / Multi-Band RF Transceivers for Wireless Communications
Author: Gernot Hueber
Publisher: John Wiley & Sons
Total Pages: 608
Release: 2011-04-04
Genre: Technology & Engineering
ISBN: 1118102207


Download Multi-Mode / Multi-Band RF Transceivers for Wireless Communications Book in PDF, Epub and Kindle

Summarizes cutting-edge physical layer technologies for multi-mode wireless RF transceivers. Includes original contributions from distinguished researchers and professionals. Covers cutting-edge physical layer technologies for multi-mode wireless RF transceivers. Contributors are all leading researchers and professionals in this field.

Computational Electromagnetic Modeling for Wireless Channel Characterization

Computational Electromagnetic Modeling for Wireless Channel Characterization
Author: Chan-Ping Edwin Lim
Publisher:
Total Pages: 111
Release: 2006
Genre: MIMO systems
ISBN:


Download Computational Electromagnetic Modeling for Wireless Channel Characterization Book in PDF, Epub and Kindle

Abstract: A new full wave methodology and a well-established ray-tracing method are employed for indoor wireless communications channel modeling. The full-wave method, referred to as array decomposition-fast multipole method (AD-FMM) for indoor simulation, is based on the finite element-boundary integral formulation. A key feature of this technique is the use of domain decomposition methods to efficiently model repeatable components such as bricks, chairs, tables, etc. This leads to significant memory reduction allowing the simulation of realistic structures with different antenna locations to predict the statistical profiles of the received signal strength. These profiles are subsequently used to evaluate the bit error rate (BER) for specific digital modulation schemes. The method is also employed to predict the statistical channel capacity for multiple input multiple output (MIMO) systems via the complementary cumulative distribution function. This dissertation also exploits an established ray-tracing electromagnetic (EM) simulation tool, and measurements for indoor channel characterization for wireless applications. Specifically, measurements are conducted for indoor environments to validate the channel model obtained using ray tracing tools. Such ray-tracing channel models are appropriate for 4th generation 60~GHz communication systems.

Backscattering and RF Sensing for Future Wireless Communication

Backscattering and RF Sensing for Future Wireless Communication
Author: Qammer H. Abbasi
Publisher: John Wiley & Sons
Total Pages: 228
Release: 2021-05-03
Genre: Technology & Engineering
ISBN: 1119695651


Download Backscattering and RF Sensing for Future Wireless Communication Book in PDF, Epub and Kindle

Backscattering and RF Sensing for Future Wireless Communication Discover what lies ahead in wireless communication networks with this insightful and forward-thinking book written by experts in the field Backscattering and RF Sensing for Future Wireless Communication delivers a concise and insightful picture of emerging and future trends in increasing the efficiency and performance of wireless communication networks. The book shows how the immense challenge of frequency saturation could be met via the deployment of intelligent planar electromagnetic structures. It provides an in-depth coverage of the fundamental physics behind these structures and assesses the enhancement of the performance of a communication network in challenging environments, like densely populated urban centers. The distinguished editors have included resources from a variety of leading voices in the field who discuss topics such as the engineering of metasurfaces at a large scale, the electromagnetic analysis of planar metasurfaces, and low-cost and reliable backscatter communication. All of the included works focus on the facilitation of the development of intelligent systems designed to enhance communication network performance. Readers will also benefit from the inclusion of: A thorough introduction to the evolution of wireless communication networks over the last thirty years, including the imminent saturation of the frequency spectrum An exploration of state-of-the-art techniques that next-generation wireless networks will likely incorporate, including software-controlled frameworks involving artificial intelligence An examination of the scattering of electromagnetic waves by metasurfaces, including how wave propagation differs from traditional bulk materials A treatment of the evolution of artificial intelligence in wireless communications Perfect for researchers in wireless communications, electromagnetics, and urban planning, Backscattering and RF Sensing for Future Wireless Communication will also earn a place in the libraries of government policy makers, technologists, and telecom industry stakeholders who wish to get a head start on understanding the technologies that will enable tomorrow’s wireless communications.