Traces in Number Theory, Geometry and Quantum Fields

Traces in Number Theory, Geometry and Quantum Fields
Author: Sergio Albeverio
Publisher: Vieweg+Teubner Verlag
Total Pages: 223
Release: 2007-12-12
Genre: Mathematics
ISBN: 9783834803719


Download Traces in Number Theory, Geometry and Quantum Fields Book in PDF, Epub and Kindle

Traces and determinants arise in various guises in many areas of mathematics and mathematical physics: in regularization procedures in quantum fields theory, in the definition of correlation functions and partition functions, in index theory for manifolds and for noncommutative spaces, and in the study of dynamical systems, through zeta functions and zeta determinants, as well as in number theory in the study of zeta and L-functions. This volumes shows, through a series of concrete example, specific results as well as broad overviews, how similar methods based on traces and determinants arise in different perspectives in the fields of number theory, dynamical systems, noncommutative geometry, differential geometry and quantum field theory.

Noncommutative Geometry, Quantum Fields and Motives

Noncommutative Geometry, Quantum Fields and Motives
Author: Alain Connes
Publisher: American Mathematical Soc.
Total Pages: 785
Release: 2019-03-13
Genre:
ISBN: 1470450453


Download Noncommutative Geometry, Quantum Fields and Motives Book in PDF, Epub and Kindle

The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book deals with quantum field theory and the geometric structure of renormalization as a Riemann-Hilbert correspondence. It also presents a model of elementary particle physics based on noncommutative geometry. The main result is a complete derivation of the full Standard Model Lagrangian from a very simple mathematical input. Other topics covered in the first part of the book are a noncommutative geometry model of dimensional regularization and its role in anomaly computations, and a brief introduction to motives and their conjectural relation to quantum field theory. The second part of the book gives an interpretation of the Weil explicit formula as a trace formula and a spectral realization of the zeros of the Riemann zeta function. This is based on the noncommutative geometry of the adèle class space, which is also described as the space of commensurability classes of Q-lattices, and is dual to a noncommutative motive (endomotive) whose cyclic homology provides a general setting for spectral realizations of zeros of L-functions. The quantum statistical mechanics of the space of Q-lattices, in one and two dimensions, exhibits spontaneous symmetry breaking. In the low-temperature regime, the equilibrium states of the corresponding systems are related to points of classical moduli spaces and the symmetries to the class field theory of the field of rational numbers and of imaginary quadratic fields, as well as to the automorphisms of the field of modular functions. The book ends with a set of analogies between the noncommutative geometries underlying the mathematical formulation of the Standard Model minimally coupled to gravity and the moduli spaces of Q-lattices used in the study of the zeta function.

Geometric Methods for Quantum Field Theory

Geometric Methods for Quantum Field Theory
Author: Hernan Ocampo
Publisher: World Scientific
Total Pages: 530
Release: 2001
Genre: Science
ISBN: 9812810579


Download Geometric Methods for Quantum Field Theory Book in PDF, Epub and Kindle

Both mathematics and mathematical physics have many active areas of research where the interplay between geometry and quantum field theory has proved extremely fruitful. Duality, gauge field theory, geometric quantization, SeibergOCoWitten theory, spectral properties and families of Dirac operators, and the geometry of loop groups offer some striking recent examples of modern topics which stand on the borderline between geometry and analysis on the one hand and quantum field theory on the other, where the physicist''s and the mathematician''s perspective complement each other, leading to new mathematical and physical concepts and results. This volume introduces the reader to some basic mathematical and physical tools and methods required to follow the recent developments in some active areas of mathematical physics, including duality, gauge field theory, geometric quantization, Seiberg-Witten theory, spectral properties and families of Dirac operators, and the geometry of loop groups. It comprises seven self-contained lectures, which should progressively give the reader a precise idea of some of the techniques used in these areas, as well as a few short communications presented by young participants at the school. Contents: Lectures: Introduction to Differentiable Manifolds and Symplectic Geometry (T Wurzbacher); Spectral Properties of the Dirac Operator and Geometrical Structures (O Hijazi); Quantum Theory of Fermion Systems: Topics Between Physics and Mathematics (E Langmann); Heat Equation and Spectral Geometry. Introduction for Beginners (K Wojciechowski); Renormalized Traces as a Geometric Tool (S Paycha); Concepts in Gauge Theory Leading to Electric-Magnetic Duality (T S Tsun); An Introduction to Seiberg-Witten Theory (H Ocampo); Short Communications: Remarks on Duality, Analytical Torsion and Gaussian Integration in Antisymmetric Field Theories (A Cardona); Multiplicative Anomaly for the e-Regularized Determinant (C Ducourtioux); On Cohomogeneity One Riemannian Manifolds (S M B Kashani); A Differentiable Calculus on the Space of Loops and Connections (M Reiris); Quantum Hall Conductivity and Topological Invariants (A Reyes); Determinant of the Dirac Operator Over the Interval [0, ] (F Torres-Ardila). Readership: Mathematicians and physicists."

Geometric And Topological Methods For Quantum Field Theory - Proceedings Of The Summer School

Geometric And Topological Methods For Quantum Field Theory - Proceedings Of The Summer School
Author: Alexander Cardona
Publisher: World Scientific
Total Pages: 495
Release: 2003-03-21
Genre: Mathematics
ISBN: 9814487678


Download Geometric And Topological Methods For Quantum Field Theory - Proceedings Of The Summer School Book in PDF, Epub and Kindle

This volume offers an introduction to recent developments in several active topics of research at the interface between geometry, topology and quantum field theory. These include Hopf algebras underlying renormalization schemes in quantum field theory, noncommutative geometry with applications to index theory on one hand and the study of aperiodic solids on the other, geometry and topology of low dimensional manifolds with applications to topological field theory, Chern-Simons supergravity and the anti de Sitter/conformal field theory correspondence. It comprises seven lectures organized around three main topics, noncommutative geometry, topological field theory, followed by supergravity and string theory, complemented by some short communications by young participants of the school.

Geometric and Topological Methods for Quantum Field Theory

Geometric and Topological Methods for Quantum Field Theory
Author: Alexander Cardona
Publisher: Cambridge University Press
Total Pages: 395
Release: 2013-05-09
Genre: Mathematics
ISBN: 1107026830


Download Geometric and Topological Methods for Quantum Field Theory Book in PDF, Epub and Kindle

A unique presentation of modern geometric methods in quantum field theory for researchers and graduate students in mathematics and physics.

Frontiers in Number Theory, Physics, and Geometry II

Frontiers in Number Theory, Physics, and Geometry II
Author: Pierre E. Cartier
Publisher: Springer Science & Business Media
Total Pages: 806
Release: 2007-07-18
Genre: Mathematics
ISBN: 3540303081


Download Frontiers in Number Theory, Physics, and Geometry II Book in PDF, Epub and Kindle

Ten years after a 1989 meeting of number theorists and physicists at the Centre de Physique des Houches, a second event focused on the broader interface of number theory, geometry, and physics. This book is the first of two volumes resulting from that meeting. Broken into three parts, it covers Conformal Field Theories, Discrete Groups, and Renormalization, offering extended versions of the lecture courses and shorter texts on special topics.

Proceedings of the Summer School Geometric and Topological Methods for Quantum Field Theory

Proceedings of the Summer School Geometric and Topological Methods for Quantum Field Theory
Author: Hernan Ocampo
Publisher: World Scientific
Total Pages: 495
Release: 2003
Genre: Science
ISBN: 9812381317


Download Proceedings of the Summer School Geometric and Topological Methods for Quantum Field Theory Book in PDF, Epub and Kindle

This volume offers an introduction to recent developments in several active topics of research at the interface between geometry, topology and quantum field theory. These include Hopf algebras underlying renormalization schemes in quantum field theory, noncommutative geometry with applications to index theory on one hand and the study of aperiodic solids on the other, geometry and topology of low dimensional manifolds with applications to topological field theory, Chern-Simons supergravity and the anti de Sitter/conformal field theory correspondence. It comprises seven lectures organized around three main topics, noncommutative geometry, topological field theory, followed by supergravity and string theory, complemented by some short communications by young participants of the school.

Noncommutative Geometry and Physics

Noncommutative Geometry and Physics
Author: Alan L. Carey
Publisher: European Mathematical Society
Total Pages: 288
Release: 2011
Genre: Geometry, Algebraic
ISBN: 9783037190081


Download Noncommutative Geometry and Physics Book in PDF, Epub and Kindle

This collection of expository articles grew out of the workshop ``Number Theory and Physics'' held in March 2009 at The Erwin Schrodinger International Institute for Mathematical Physics, Vienna. The common theme of the articles is the influence of ideas from noncommutative geometry (NCG) on subjects ranging from number theory to Lie algebras, index theory, and mathematical physics. Matilde Marcolli's article gives a survey of relevant aspects of NCG in number theory, building on an introduction to motives for beginners by Jorge Plazas and Sujatha Ramdorai. A mildly unconventional view of index theory, from the viewpoint of NCG, is described in the article by Alan Carey, John Phillips, and Adam Rennie. As developed by Alain Connes and Dirk Kreimer, NCG also provides insight into novel algebraic structures underlying many analytic aspects of quantum field theory. Dominique Manchon's article on pre-Lie algebras fits into this developing research area. This interplay of algebraic and analytic techniques also appears in the articles by Christoph Bergbauer, who introduces renormalization theory and Feynman diagram methods, and Sylvie Paycha, who focuses on relations between renormalization and zeta function techniques.

Motives, Quantum Field Theory, and Pseudodifferential Operators

Motives, Quantum Field Theory, and Pseudodifferential Operators
Author: Alan L. Carey
Publisher: American Mathematical Soc.
Total Pages: 361
Release: 2010
Genre: Mathematics
ISBN: 0821851993


Download Motives, Quantum Field Theory, and Pseudodifferential Operators Book in PDF, Epub and Kindle

This volume contains articles related to the conference ``Motives, Quantum Field Theory, and Pseudodifferntial Operators'' held at Boston University in June 2008, with partial support from the Clay Mathematics Institute, Boston University, and the National Science Foundation. There are deep but only partially understood connections between the three conference fields, so this book is intended both to explain the known connections and to offer directions for further research. In keeping with the organization of the conference, this book contains introductory lectures on each of the conference themes and research articles on current topics in these fields. The introductory lectures are suitable for graduate students and new Ph.D.'s in both mathematics and theoretical physics, as well as for senior researchers, since few mathematicians are expert in any two of the conference areas. Among the topics discussed in the introductory lectures are the appearance of multiple zeta values both as periods of motives and in Feynman integral calculations in perturbative QFT, the use of Hopf algebra techniques for renormalization in QFT, and regularized traces of pseudodifferential operators. The motivic interpretation of multiple zeta values points to a fundamental link between motives and QFT, and there are strong parallels between regularized traces and Feynman integral techniques. The research articles cover a range of topics in areas related to the conference themes, including geometric, Hopf algebraic, analytic, motivic and computational aspects of quantum field theory and mirror symmetry. There is no unifying theory of the conference areas at present, so the research articles present the current state of the art pointing towards such a unification.

Operators, Geometry and Quanta

Operators, Geometry and Quanta
Author: Dmitri Fursaev
Publisher: Springer Science & Business Media
Total Pages: 294
Release: 2011-06-25
Genre: Science
ISBN: 9400702051


Download Operators, Geometry and Quanta Book in PDF, Epub and Kindle

This book gives a detailed and self-contained introduction into the theory of spectral functions, with an emphasis on their applications to quantum field theory. All methods are illustrated with applications to specific physical problems from the forefront of current research, such as finite-temperature field theory, D-branes, quantum solitons and noncommutativity. In the first part of the book, necessary background information on differential geometry and quantization, including less standard material, is collected. The second part of the book contains a detailed description of main spectral functions and methods of their calculation. In the third part, the theory is applied to several examples (D-branes, quantum solitons, anomalies, noncommutativity). This book addresses advanced graduate students and researchers in mathematical physics with basic knowledge of quantum field theory and differential geometry. The aim is to prepare readers to use spectral functions in their own research, in particular in relation to heat kernels and zeta functions.