Theory of BCS-BEC Crossover in Ultra-cold Atomic Gases

Theory of BCS-BEC Crossover in Ultra-cold Atomic Gases
Author: Yasemin Gurcan
Publisher:
Total Pages: 218
Release: 2012
Genre:
ISBN: 9781267803146


Download Theory of BCS-BEC Crossover in Ultra-cold Atomic Gases Book in PDF, Epub and Kindle

In ultracold atomic fermions, the sign and the magnitude of pairing interactions can be controlled by using the magnetically-tuned Feshbach resonances to achieve a continuos transition between Cooper pairs of dilute fermi gas to BEC of diatomic molecules, which is known as the "BCS-BEC crossover". At present, although several models have been proposed, there is still no exact analytical solution of the many-body problem of BCS-BEC crossover region. The standard BCS mean field theory of superconductivity was used [1-3] to describe the whole crossover resulting a useful approximation. In our studies, we investigated solvable models for the best variational analytical solution for BCS-BEC crossover at T= 0.

The BCS-BEC Crossover and the Unitary Fermi Gas

The BCS-BEC Crossover and the Unitary Fermi Gas
Author: Wilhelm Zwerger
Publisher: Springer Science & Business Media
Total Pages: 543
Release: 2011-10-22
Genre: Science
ISBN: 3642219772


Download The BCS-BEC Crossover and the Unitary Fermi Gas Book in PDF, Epub and Kindle

Recent experimental and theoretical progress has elucidated the tunable crossover, in ultracold Fermi gases, from BCS-type superconductors to BEC-type superfluids. The BCS-BEC Crossover and the Unitary Fermi Gas is a collaborative effort by leading international experts to provide an up-to-date introduction and a comprehensive overview of current research in this fast-moving field. It is now understood that the unitary regime that lies right in the middle of the crossover has remarkable universal properties, arising from scale invariance, and has connections with fields as diverse as nuclear physics and string theory. This volume will serve as a first point of reference for active researchers in the field, and will benefit the many non-specialists and graduate students who require a self-contained, approachable exposition of the subject matter.

Physics On Ultracold Quantum Gases

Physics On Ultracold Quantum Gases
Author: Yongjian Han
Publisher: World Scientific
Total Pages: 287
Release: 2018-11-16
Genre: Science
ISBN: 9813270772


Download Physics On Ultracold Quantum Gases Book in PDF, Epub and Kindle

This book derives from the content of graduate courses on cold atomic gases, taught at the Renmin University of China and at the University of Science and Technology of China. It provides a brief review on the history and current research frontiers in the field of ultracold atomic gases, as well as basic theoretical description of few- and many-body physics in the system. Starting from the basics such as atomic structure, atom-light interaction, laser cooling and trapping, the book then moves on to focus on the treatment of ultracold Fermi gases, before turning to topics in quantum simulation using cold atoms in optical lattices.The book would be ideal not only for professionals and researchers, but also for familiarizing junior graduate students with the subject and aiding them in their preparation for future study and research in the field.

Ultra-cold Fermi Gases

Ultra-cold Fermi Gases
Author: M. Inguscio
Publisher: IOS Press
Total Pages: 933
Release: 2008-04-18
Genre: Science
ISBN: 1607503182


Download Ultra-cold Fermi Gases Book in PDF, Epub and Kindle

The field of cold atomic gases faced a revolution in 1995 when Bose-Einstein condensation was achieved. Since then, there has been an impressive progress, both experimental and theoretical. The quest for ultra-cold Fermi gases started shortly after the 1995 discovery, and quantum degeneracy in a gas of fermionic atoms was obtained in 1999. The Pauli exclusion principle plays a crucial role in many aspects of ultra-cold Fermi gases, including inhibited interactions with applications to precision measurements, and strong correlations. The path towards strong interactions and pairing of fermions opened up with the discovery in 2003 that molecules formed by fermions near a Feshbach resonance were surprisingly stable against inelastic decay, but featured strong elastic interactions. This remarkable combination was explained by the Pauli exclusion principle and the fact that only inelastic collisions require three fermions to come close to each other. The unexpected stability of strongly interacting fermions and fermion pairs triggered most of the research which was presented at this summer school. It is remarkable foresight (or good luck) that the first steps to organize this summer school were already taken before this discovery. It speaks for the dynamics of the field how dramatically it can change course when new insight is obtained. The contributions in this volume provide a detailed coverage of the experimental techniques for the creation and study of Fermi quantum gases, as well as the theoretical foundation for understanding the properties of these novel systems.

Ultracold Bosonic and Fermionic Gases

Ultracold Bosonic and Fermionic Gases
Author: Kathy Levin
Publisher: Elsevier
Total Pages: 225
Release: 2012-11-15
Genre: Science
ISBN: 0444538623


Download Ultracold Bosonic and Fermionic Gases Book in PDF, Epub and Kindle

The rapidly developing topic of ultracold atoms has many actual and potential applications for condensed-matter science, and the contributions to this book emphasize these connections. Ultracold Bose and Fermi quantum gases are introduced at a level appropriate for first-year graduate students and non-specialists such as more mature general physicists. The reader will find answers to questions like: how are experiments conducted and how are the results interpreted? What are the advantages and limitations of ultracold atoms in studying many-body physics? How do experiments on ultracold atoms facilitate novel scientific opportunities relevant to the condensed-matted community? This volume seeks to be comprehensible rather than comprehensive; it aims at the level of a colloquium, accessible to outside readers, containing only minimal equations and limited references. In large part, it relies on many beautiful experiments from the past fifteen years and their very fruitful interplay with basic theoretical ideas. In this particular context, phenomena most relevant to condensed-matter science have been emphasized. Introduces ultracold Bose and Fermi quantum gases at a level appropriate for non-specialists Discusses landmark experiments and their fruitful interplay with basic theoretical ideas Comprehensible rather than comprehensive, containing only minimal equations

Quantum Gas Experiments: Exploring Many-body States

Quantum Gas Experiments: Exploring Many-body States
Author: Paivi Torma
Publisher: World Scientific
Total Pages: 339
Release: 2014-09-16
Genre: Science
ISBN: 1783264772


Download Quantum Gas Experiments: Exploring Many-body States Book in PDF, Epub and Kindle

Quantum phenomena of many-particle systems are fascinating in their complexity and are consequently not fully understood and largely untapped in terms of practical applications. Ultracold gases provide a unique platform to build up model systems of quantum many-body physics with highly controlled microscopic constituents. In this way, many-body quantum phenomena can be investigated with an unprecedented level of precision, and control and models that cannot be solved with present day computers may be studied using ultracold gases as a quantum simulator.This book addresses the need for a comprehensive description of the most important advanced experimental methods and techniques that have been developed along with the theoretical framework in a clear and applicable format. The focus is on methods that are especially crucial in probing and understanding the many-body nature of the quantum phenomena in ultracold gases and most topics are covered both from a theoretical and experimental viewpoint, with interrelated chapters written by experts from both sides of research.Graduate students and post-doctoral researches working on ultracold gases will benefit from this book, as well as researchers from other fields who wish to gain an overview of the recent fascinating developments in this very dynamically evolving field. Sufficient level of both detailed high level research and a pedagogical approach is maintained throughout the book so as to be of value to those entering the field as well as advanced researchers. Furthermore, both experimentalists and theorists will benefit from the book; close collaboration between the two are continuously driving the field to a very high level and will be strengthened to continue the important progress yet to be made in the field.

Proceedings of the International School of Physics "Enrico Fermi."

Proceedings of the International School of Physics
Author: Società italiana di fisica
Publisher: IOS Press
Total Pages: 933
Release: 2007
Genre: Science
ISBN: 158603846X


Download Proceedings of the International School of Physics "Enrico Fermi." Book in PDF, Epub and Kindle

The field of cold atomic gases faced a revolution in 1995 when Bose-Einstein condensation was achieved. The quest for ultra-cold Fermi gases started shortly after the 1995 discovery, and quantum degeneracy in a gas of fermionic atoms was obtained in 1999. This work covers experimental techniques for the creation and study of Fermi quantum gases.

Ultracold Atomic Physics

Ultracold Atomic Physics
Author: Hui Zhai
Publisher: Cambridge University Press
Total Pages: 311
Release: 2021-02-25
Genre: Science
ISBN: 110849868X


Download Ultracold Atomic Physics Book in PDF, Epub and Kindle

A modern introduction to ultracold atomic physics combining fundamental theory with discussion of cold atom phenomena and applications.

Ultracold Quantum Fields

Ultracold Quantum Fields
Author: Henk T. C. Stoof
Publisher: Springer Science & Business Media
Total Pages: 485
Release: 2008-11-30
Genre: Technology & Engineering
ISBN: 1402087632


Download Ultracold Quantum Fields Book in PDF, Epub and Kindle

On June 19th 1999, the European Ministers of Education signed the Bologna Dec laration, with which they agreed that the European university education should be uniformized throughout Europe and based on the two cycle bachelor master’s sys tem. The Institute for Theoretical Physics at Utrecht University quickly responded to this new challenge and created an international master’s programme in Theoret ical Physics which started running in the summer of 2000. At present, the master’s programme is a so called prestige master at Utrecht University, and it aims at train ing motivated students to become sophisticated researchers in theoretical physics. The programme is built on the philosophy that modern theoretical physics is guided by universal principles that can be applied to any sub?eld of physics. As a result, the basis of the master’s programme consists of the obligatory courses Statistical Field Theory and Quantum Field Theory. These focus in particular on the general concepts of quantum ?eld theory, rather than on the wide variety of possible applica tions. These applications are left to optional courses that build upon the ?rm concep tual basis given in the obligatory courses. The subjects of these optional courses in clude, for instance, Strongly Correlated Electrons, Spintronics, Bose Einstein Con densation, The Standard Model, Cosmology, and String Theory.