Theoretical Femtosecond Physics

Theoretical Femtosecond Physics
Author: Frank Grossmann
Publisher: Springer Science & Business Media
Total Pages: 216
Release: 2008-07-24
Genre: Science
ISBN: 3540778977


Download Theoretical Femtosecond Physics Book in PDF, Epub and Kindle

This volume offers theoretical investigations of atoms and molecules interacting with pulsed or continuous wave lasers. Theoretical background is included, and the text incorporates several exercises. Additional calculations are performed in the appendices.

Femtosecond Laser-Matter Interaction

Femtosecond Laser-Matter Interaction
Author: Eugene G. Gamaly
Publisher: CRC Press
Total Pages: 370
Release: 2011-10-06
Genre: Science
ISBN: 9814241814


Download Femtosecond Laser-Matter Interaction Book in PDF, Epub and Kindle

This is the first comprehensive treatment of the interaction of femtosecond laser pulses with solids at nonrelativistic intensity. It connects phenomena from the subtle atomic motion on the nanoscale to the generation of extreme pressure and temperature in the interaction zone confined inside a solid. The femtosecond laser-matter interaction has already found numerous applications in industry, medicine, and materials science. However, there is no consensus on the interpretation of related phenomena. With mathematics kept to a minimum, this is a highly engaging and readable treatment for students and researchers in science and engineering. The book avoids complex mathematical formulae, and hence the content is accessible to nontechnical readers. Useful summaries after each chapter provide compressed information for quick estimates of major parameters in planned or performed experiments. The book connects the basic physics of femtosecond laser-solid interactions to a broad range of applications. Throught the text, basic assumptions are derived from the first principles, and new results and ideas are presented. From such analyses, a qualitative and predictive framework for the field emerges, the impact of which on applications is also discussed.

Femtosecond Physics

Femtosecond Physics
Author: Stefano Spezia
Publisher: Arcler Press
Total Pages: 0
Release: 2018-12
Genre: Science
ISBN: 9781773615219


Download Femtosecond Physics Book in PDF, Epub and Kindle

Femtosecond physics is a novel branch of the theoretical physics, which investigates the interaction of atoms and molecules with pulsed or continuous wave lasers. In particular, this book treats the laser-matter coupling in a non-perturbative way using both approximate and numerical solutions of the Time-Dependent Schrödinger Equation (TDSE). Here, with the exception of one case study, the electromagnetic field is classically treated. Several physical phenomena ranging from ionization of atoms and molecules to their dissociation and the control of photochemical reactions are presented and discussed. This book begins with a wide Section 1, which deals with the TDSE and in particular, with its solutions. Initially, it considers only those cases exactly soluble, such as a class of potentials for which the TDSE with position-dependent mass allows reduction to a stationary Schrödinger equation, a time-dependent anharmonic oscillator, and at last, the derivation of a general form of the imaginary effective potential that relates the TDSE to the generalized Schrödinger equation with a memory kernel. Section 2 focuses on the field-matter interaction in quantum two-level systems, and in particular, a derivation of analytic broadband /2 and pulses that perform exact, or asymptotically exact, excitation of spin systems, presenting a nontrivial dynamic connection between nonlinear spin and linear spring systems. Finally, the last Section 3 considers several cases of atoms and molecules in strong laser fields. In detail, this section discusses a kinematic mechanism underlying the recently discovered 'near-zero energy structure' in the photoionization of atoms in strong mid-infrared laser fields and presents a number of benchmark calculations for intense short-pulse laser interactions with small atoms and molecules. Moreover, Section 3 presents a theoretical approach to investigate the high-order harmonic generation in the nano-graphene molecules and describes the few-electron ultrastrong light-matter coupling in a quantum LC circuit. Book jacket.

Femtosecond Laser-Matter Interaction

Femtosecond Laser-Matter Interaction
Author: Eugene G. Gamaly
Publisher: CRC Press
Total Pages: 350
Release: 2011-10-06
Genre: Science
ISBN: 9814267805


Download Femtosecond Laser-Matter Interaction Book in PDF, Epub and Kindle

This is the first comprehensive treatment of the interaction of femtosecond laser pulses with solids at nonrelativistic intensity. It connects phenomena from the subtle atomic motion on the nanoscale to the generation of extreme pressure and temperature in the interaction zone confined inside a solid. The femtosecond laser-matter interaction has al

Ultrafast Phenomena in Molecular Sciences

Ultrafast Phenomena in Molecular Sciences
Author: Rebeca de Nalda
Publisher: Springer
Total Pages: 287
Release: 2013-11-27
Genre: Science
ISBN: 9783319020525


Download Ultrafast Phenomena in Molecular Sciences Book in PDF, Epub and Kindle

This book presents the latest developments in Femtosecond Chemistry and Physics for the study of ultrafast photo-induced molecular processes. Molecular systems, from the simplest H2 molecule to polymers or biological macromolecules, constitute central objects of interest for Physics, Chemistry and Biology, and despite the broad range of phenomena that they exhibit, they share some common behaviors. One of the most significant of those is that many of the processes involving chemical transformation (nuclear reorganization, bond breaking, bond making) take place in an extraordinarily short time, in or around the femtosecond temporal scale (1 fs = 10-15 s). A number of experimental approaches - very particularly the developments in the generation and manipulation of ultrashort laser pulses - coupled with theoretical progress, provide the ultrafast scientist with powerful tools to understand matter and its interaction with light, at this spatial and temporal scale. This book is an attempt to reunite some of the state-of-the-art research that is being carried out in the field of ultrafast molecular science, from theoretical developments, through new phenomena induced by intense laser fields, to the latest techniques applied to the study of molecular dynamics.

Ultrafast Phenomena in Molecular Sciences

Ultrafast Phenomena in Molecular Sciences
Author: Rebeca de Nalda
Publisher: Springer Science & Business Media
Total Pages: 298
Release: 2013-10-22
Genre: Science
ISBN: 331902051X


Download Ultrafast Phenomena in Molecular Sciences Book in PDF, Epub and Kindle

This book presents the latest developments in Femtosecond Chemistry and Physics for the study of ultrafast photo-induced molecular processes. Molecular systems, from the simplest H2 molecule to polymers or biological macromolecules, constitute central objects of interest for Physics, Chemistry and Biology, and despite the broad range of phenomena that they exhibit, they share some common behaviors. One of the most significant of those is that many of the processes involving chemical transformation (nuclear reorganization, bond breaking, bond making) take place in an extraordinarily short time, in or around the femtosecond temporal scale (1 fs = 10-15 s). A number of experimental approaches - very particularly the developments in the generation and manipulation of ultrashort laser pulses - coupled with theoretical progress, provide the ultrafast scientist with powerful tools to understand matter and its interaction with light, at this spatial and temporal scale. This book is an attempt to reunite some of the state-of-the-art research that is being carried out in the field of ultrafast molecular science, from theoretical developments, through new phenomena induced by intense laser fields, to the latest techniques applied to the study of molecular dynamics.

Femtosecond Laser Filamentation

Femtosecond Laser Filamentation
Author: See Leang Chin
Publisher: Springer Science & Business Media
Total Pages: 138
Release: 2010-03-10
Genre: Science
ISBN: 1441906886


Download Femtosecond Laser Filamentation Book in PDF, Epub and Kindle

This book attempts to give a discussion of the physics and current and potential applications of the self-focusing of an intense femtosecond laser pulse in a tra- parent medium. Although self-focusing is an old subject of nonlinear optics, the consequence of self-focusing of intense femtosecond laser pulses is totally new and unexpected. Thus, new phenomena are observed, such as long range lam- tation, intensity clamping, white light laser pulse, self-spatial ltering, self-group phase locking, self-pulse compression, clean nonlinear uorescence, and so on. Long range propagation at high intensity, which is seemingly against the law of diffraction, is probably one of the most exciting consequences of this new sub- eld of nonlinear optics. Because the intensity inside the lament core is high, new ways of doing nonlinear optics inside the lament become possible. We call this lamentation nonlinear optics. We shall describe the generation of pulses at other wavelengths in the visible and ultraviolet (UV) starting from the near infrared pump pulse at 800 nm through four-wave-mixing and third harmonic generation, all in gases. Remotely sensing uorescence from the fragments of chemical and biological agents in all forms, gaseous, aerosol or solid, inside the laments in air is demonstrated in the labo- tory. The results will be shown in the last part of the book. Through analyzing the uorescence of gas molecules inside the lament, an unexpected physical process pertaining to the interaction of synchrotron radiation with molecules is observed.

Fundamentals of Attosecond Optics

Fundamentals of Attosecond Optics
Author: Zenghu Chang
Publisher: CRC Press
Total Pages: 536
Release: 2016-04-19
Genre: Science
ISBN: 1420089382


Download Fundamentals of Attosecond Optics Book in PDF, Epub and Kindle

Attosecond optical pulse generation, along with the related process of high-order harmonic generation, is redefining ultrafast physics and chemistry. A practical understanding of attosecond optics requires significant background information and foundational theory to make full use of these cutting-edge lasers and advance the technology toward the n

Ultrashort Laser Pulse Phenomena

Ultrashort Laser Pulse Phenomena
Author: Jean-Claude Diels
Publisher: Elsevier
Total Pages: 675
Release: 2006-09-21
Genre: Science
ISBN: 0080466400


Download Ultrashort Laser Pulse Phenomena Book in PDF, Epub and Kindle

Ultrashort Laser Pulse Phenomena, Second Edition serves as an introduction to the phenomena of ultra short laser pulses and describes how this technology can be used to examine problems in areas such as electromagnetism, optics, and quantum mechanics. Ultrashort Laser Pulse Phenomena combines theoretical backgrounds and experimental techniques and will serve as a manual on designing and constructing femtosecond ("faster than electronics") systems or experiments from scratch. Beyond the simple optical system, the various sources of ultrashort pulses are presented, again with emphasis on the basic concepts and how they apply to the design of particular sources (dye lasers, solid state lasers, semiconductor lasers, fiber lasers, and sources based on frequency conversion). Provides an easy to follow guide through "faster than electronics" probing and detection methods THE manual on designing and constructing femtosecond systems and experiments Discusses essential technology for applications in micro-machining, femtochemistry, and medical imaging

The Theory of Laser Materials Processing

The Theory of Laser Materials Processing
Author: John Dowden
Publisher: Springer
Total Pages: 442
Release: 2017-06-16
Genre: Science
ISBN: 331956711X


Download The Theory of Laser Materials Processing Book in PDF, Epub and Kindle

The revised edition of this important reference volume presents an expanded overview of the analytical and numerical approaches employed when exploring and developing modern laser materials processing techniques. The book shows how general principles can be used to obtain insight into laser processes, whether derived from fundamental physical theory or from direct observation of experimental results. The book gives readers an understanding of the strengths and limitations of simple numerical and analytical models that can then be used as the starting-point for more elaborate models of specific practical, theoretical or commercial value. Following an introduction to the mathematical formulation of some relevant classes of physical ideas, the core of the book consists of chapters addressing key applications in detail: cutting, keyhole welding, drilling, arc and hybrid laser-arc welding, hardening, cladding and forming. The second edition includes a new a chapter on glass cutting with lasers, as employed in the display industry. A further addition is a chapter on meta-modelling, whose purpose is to construct fast, simple and reliable models based on appropriate sources of information. It then makes it easy to explore data visually and is a convenient interactive tool for scientists to improve the quality of their models and for developers when designing their processes. As in the first edition, the book ends with an updated introduction to comprehensive numerical simulation. Although the book focuses on laser interactions with materials, many of the principles and methods explored can be applied to thermal modelling in a variety of different fields and at different power levels. It is aimed principally however at academic and industrial researchers and developers in the field of laser technology.