The Physical Reality of Applied Quantum Optics

The Physical Reality of Applied Quantum Optics
Author: Andre Vatarescu
Publisher: Cambridge Scholars Publishing
Total Pages: 169
Release: 2021-04-09
Genre: Technology & Engineering
ISBN: 152756813X


Download The Physical Reality of Applied Quantum Optics Book in PDF, Epub and Kindle

This book scrutinises, physically, the devices and components used in quantum optic experiments, revealing various, hitherto ignored, phenomena, including quantum Rayleigh spontaneous and stimulated emissions, the unavoidable parametric amplification of spontaneous emission, and the formation of groups of monochromatic photons in a high finesse cavity incorporating a quantum dot. The book also explores self-contained quantisation of the optical field without any harmonic oscillators leading to the dynamic and coherent number states, the intrinsic optical field of photons and their localised spatial distributions, and instantaneous and localised photon-dipole interactions by means of pure, dynamic and coherent number states. In addition, it looks at the quantum evolution and predictions being described by the Ehrenfest theorem, for any level of optical field excitation, in order to evaluate the expectation value of an operator in the context of a given set of pure wavefunctions, and identifies quantum phenomena at the level of single events and measurements with a space- and time-dependence, leading to quantum locality and realism. Overall, the book shows that there are no quantum optic “miracles” once the physically present effects are correctly identified.

An Introduction to Quantum Optics

An Introduction to Quantum Optics
Author: Yanhua Shih
Publisher: CRC Press
Total Pages: 470
Release: 2018-12-07
Genre: Technology & Engineering
ISBN: 042989306X


Download An Introduction to Quantum Optics Book in PDF, Epub and Kindle

Authored by a highly regarded international researcher and pioneer in the field, An Introduction to Quantum Optics: Photon and Biphoton Physics is a straightforward overview of basic principles and experimental evidence for the quantum theory of light. This book introduces and analyzes some of the most exciting experimental research to date in the field of quantum optics and quantum information, helping readers understand the revolutionary changes occurring in optical science. Paints a picture of light in terms of general quantum interference, to reflect the physical truth behind all optical observations Unlike most traditional books on the subject, this one introduces fundamental classical and quantum concepts and measurement techniques naturally and gradually as it explores the process of analyzing typical experimental observations. Separating itself from other books with this uncommon focus on the experimental part of analysis, this volume: Provides a general overview of the optical coherence of light without quantization Introduces concepts and tools of field quantization and quantum optics based on the principles and rules of quantum mechanics Analyzes similarities and differences between classical and quantum coherence Concentrates on key research topics in quantum optics Explains photon and biphoton physics by examining the devices and experimental procedures used to test theories This book is basic enough for students, but it also covers a broad range of higher-level concepts that will benefit scientists and other professionals seeking to enhance their understanding of practical and theoretical aspects and new experimental methods of measurement. This material summarizes exciting developments and observations and then helps readers of all levels apply presented concepts and tools to summarize, analyze, and resolve quantum optical problems in their own work. It is a great aid to improve methods of discovering new physics and better understand and apply nontraditional concepts and interpretations in both new and historical experimental discoveries.

Quantum Optics

Quantum Optics
Author: John Garrison
Publisher: Oxford University Press
Total Pages: 731
Release: 2008-06-05
Genre: Science
ISBN: 0198508867


Download Quantum Optics Book in PDF, Epub and Kindle

This book develops the theoretical and experimental basis of quantum optics, i.e. the interaction of individual particles of light (photons) with matter, starting from elementary quantum theory. The self-contained exposition will be useful to graduate students in physics, engineering, chemistry, and senior undergraduates in physics.

Quantum Optics

Quantum Optics
Author: D.F. Walls
Publisher: Springer Science & Business Media
Total Pages: 356
Release: 2012-12-06
Genre: Science
ISBN: 3642795048


Download Quantum Optics Book in PDF, Epub and Kindle

Quantum Optics gives a comprehensive coverage of developments in quantum optics over the past twenty years. In the early chapters the formalism of quantum optics is elucidated and the main techniques are introduced. These are applied in the later chapters to problems such as squeezed states of light, resonance fluorescence, laser theory, quantum theory of four-wave mixing, quantum non-demolition measurements, Bell's inequalities, and atom optics. Experimental results are used to illustrate the theory throughout. This yields the most comprehensive and up-to-date coverage of experiment and theory in quantum optics in any textbook.

Quantum Optics

Quantum Optics
Author: Anthony Mark Fox
Publisher: Oxford University Press, USA
Total Pages: 397
Release: 2006-04-27
Genre: Science
ISBN: 0198566727


Download Quantum Optics Book in PDF, Epub and Kindle

Written primarily for advanced undergraduate and Master's level students in physics, this text includes a broad range of topics in applied quantum optics such as laser cooling, Bose-Einstein condensation and quantum information processing.

Modern Foundations of Quantum Optics

Modern Foundations of Quantum Optics
Author: Vlatko Vedral
Publisher: World Scientific Publishing Company
Total Pages: 238
Release: 2005-02-23
Genre: Science
ISBN: 1911298356


Download Modern Foundations of Quantum Optics Book in PDF, Epub and Kindle

This textbook offers a comprehensive and up-to-date overview of the basic ideas in modern quantum optics, beginning with a review of the whole of optics, and culminating in the quantum description of light. The book emphasizes the phenomenon of interference as the key to understanding the behavior of light, and discusses distinctions between the classical and quantum nature of light. Laser operation is reviewed at great length and many applications are covered, such as laser cooling, Bose condensation and the basics of quantum information and teleportation. Quantum mechanics is introduced in detail using the Dirac notation, which is explained from first principles. In addition, a number of non-standard topics are covered such as the impossibility of a light-based Maxwell's demon, the derivation of the Second Law of thermodynamics from the first-order time-dependent quantum perturbation theory, and the concept of Berry's phase. The book emphasizes the physical basics much more than the formal mathematical side, and is ideal for a first, yet in-depth, introduction to the subject. Five sets of problems with solutions are included to further aid understanding of the subject. Contents:From Geometry to the QuantumIntroduction to LasersProperties of Light: Blackbody RadiationInteraction of Light with Matter IBasic Optical Processes — Still ClassicalMore Detailed Principles of LaserInteractions of Light with Matter IITwo Level SystemsField QuantizationInteraction of Light with Matter IIISome Recent Applications of Quantum OpticsClosing LinesProblems and Solutions Readership: Physics and chemistry undergraduates (3rd and 4th year, as well as advanced 2nd year) and first year postgraduate students. Ideal as a textbook for a one-term long course on quantum optics.

Elements of Quantum Optics

Elements of Quantum Optics
Author: Pierre Meystre
Publisher: Springer Science & Business Media
Total Pages: 509
Release: 2013-04-17
Genre: Science
ISBN: 3662116545


Download Elements of Quantum Optics Book in PDF, Epub and Kindle

This book grew out of a 2-semester graduate course in laser physics and quantum optics. It requires a solid understanding of elementary electro magnetism as well as at least one, but preferably two, semesters of quantum mechanics. Its present form resulted from many years of teaching and research at the University of Arizona, the Max-Planck-Institut fiir Quanten optik, and the University of Munich. The contents have evolved signifi cantly over the years, due to the fact that quantum optics is a rapidly chang ing field. Because the amount of material that can be covered in two semes ters is finite, a number of topics had to be left out or shortened when new material was added. Important omissions include the manipulation of atomic trajectories by light, superradiance, and descriptions of experiments. Rather than treating any given topic in great depth, this book aims to give a broad coverage of the basic elements that we consider necessary to carry out research in quantum optics. We have attempted to present a vari ety of theoretical tools, so that after completion of the course students should be able to understand specialized research literature and to produce original research of their own. In doing so, we have always sacrificed rigor to physical insight and have used the concept of "simplest nontrivial exam ple" to illustrate techniques or results that can be generalized to more com plicated situations.

Fundamental and Applied Quantum Optics

Fundamental and Applied Quantum Optics
Author:
Publisher:
Total Pages: 0
Release: 2003
Genre:
ISBN:


Download Fundamental and Applied Quantum Optics Book in PDF, Epub and Kindle

Recent advances in quantum optics resulting from the study of atomic coherence effects have lead to substantial breakthroughs in quantum computing, metrology, high precision spectroscopy, telecommunications, generation of high- and low-frequency coherent radiation, etc. Using the most recent theoretical and experimental tools, we work on both the theory of basic physical phenomena and on practical implementation of these theoretical ideas.

Quantum Optics of Confined Systems

Quantum Optics of Confined Systems
Author: M. Ducloy
Publisher: Springer Science & Business Media
Total Pages: 428
Release: 1996-03-31
Genre: Science
ISBN: 9780792339748


Download Quantum Optics of Confined Systems Book in PDF, Epub and Kindle

In the last few years it was seen the emergence of various new quantum phenomena specifically related with electronic or optical confinement on a sub-wavelength-size. Fast developments simultaneously occurred in the field of Atomic Physics, notably through various regimes of Cavity Quantum Electrodynamics, and in Solid State Physics, with advances in Quantum Well technology and Nanooptoelectronics. Simultaneously, breakthroughs in Near-Field Optics provided new tools which should be widely applicable to these domains. However, the key concepts used to describe these new and partly related effects are often very different and specific of the Community involved in a given development. It has been the ambition of the Meeting held at "Centre de Physique des Houches" to give an opportunity to specialists of different Communities to deepen their understanding of advances more or less intimately related to their own field, while presenting the basic concepts of these different fields through pedagogical Introductions. The audience comprised advanced students, postdocs and senior scientists, with a balanced participation of Atomic Physicists and Solid State Physicists, and had a truly international character. The considerable efforts of the lecturers, in order to present exciting new results in a language accessible to the whole audience, were the essential ingredients to achieve successfully what was the main goal of this School.

Quantum Optics

Quantum Optics
Author: Pierre Meystre
Publisher: Springer Nature
Total Pages: 402
Release: 2021-07-24
Genre: Science
ISBN: 3030761835


Download Quantum Optics Book in PDF, Epub and Kindle

This book is a thoroughly modern and highly pedagogical graduate-level introduction to quantum optics, a subject which has witnessed stunning developments in recent years and has come to occupy a central role in the 'second quantum revolution'. The reader is invited to explore the fundamental role that quantum optics plays in the control and manipulation of quantum systems, leading to ultracold atoms, circuit QED, quantum information science, quantum optomechanics, and quantum metrology. The building blocks of the subject are presented in a sequential fashion, starting from the simplest physical situations before moving to increasingly complicated ones. This pedagogically appealing approach leads to quantum entanglement and measurement theory being introduced early on and before more specialized topics such as cavity QED or laser cooling. The final chapter illustrates the power of scientific cross-fertilization by surveying cutting-edge applications of quantum optics and optomechanics in gravitational wave detection, tests of fundamental physics, searches for dark matter, geophysical monitoring, and ultraprecise clocks. Complete with worked examples and exercises, this book provides the reader with enough background knowledge and understanding to follow the current journal literature and begin producing their own original research.