Direct Numerical Simulations of Gas–Liquid Multiphase Flows

Direct Numerical Simulations of Gas–Liquid Multiphase Flows
Author: Grétar Tryggvason
Publisher: Cambridge University Press
Total Pages: 337
Release: 2011-03-10
Genre: Computers
ISBN: 1139496700


Download Direct Numerical Simulations of Gas–Liquid Multiphase Flows Book in PDF, Epub and Kindle

Accurately predicting the behaviour of multiphase flows is a problem of immense industrial and scientific interest. Modern computers can now study the dynamics in great detail and these simulations yield unprecedented insight. This book provides a comprehensive introduction to direct numerical simulations of multiphase flows for researchers and graduate students. After a brief overview of the context and history the authors review the governing equations. A particular emphasis is placed on the 'one-fluid' formulation where a single set of equations is used to describe the entire flow field and interface terms are included as singularity distributions. Several applications are discussed, showing how direct numerical simulations have helped researchers advance both our understanding and our ability to make predictions. The final chapter gives an overview of recent studies of flows with relatively complex physics, such as mass transfer and chemical reactions, solidification and boiling, and includes extensive references to current work.

Mathematics of Traffic Flow Networks

Mathematics of Traffic Flow Networks
Author: Michael Herty
Publisher: Logos Verlag Berlin GmbH
Total Pages: 150
Release: 2004
Genre: Mathematics
ISBN:


Download Mathematics of Traffic Flow Networks Book in PDF, Epub and Kindle

Traffic flow has been a continuous source of challenging mathematical problems. The following work is dedicated to recent questions in modeling, simulation and optimization of traffic flow networks. Mathematics can help to solve traffic problems in different ways. Modelling provides fundamental understanding of traffic dynamics and behaviour. Optimization yields solutions for complex situations and helps to organize traffic flow. During the last decade there has been intensive research in different fields of and related to traffic flow. One of the primary research activities focus on the development of new and more realistic models for traffic flow on a single road. Our work's primary focus is on models for networks. We provide new ideas on modelling flow in networks and solve different optimization problems analytically and numerically. The main result is the derivation of a hierarchy of models treating different situations with suitable traffic flow models. To each level of modeling we consider the optimal control problems and present techniques to address those problems. Furthermore, we derive an adjoint calculus for scalar hyperbolic equations with nonlinear boundary controls. The derived concepts fit for general network problems as well as they do for traffic flow issues. The principles of modeling and simplification can be applied to all kinds of network flows, like fluid flow in open channels or gas networks.

Numerical Simulation of Rarefied Gas Flow in Micro and Vacuum Devices

Numerical Simulation of Rarefied Gas Flow in Micro and Vacuum Devices
Author: Anirudh Singh Rana
Publisher:
Total Pages:
Release: 2014
Genre:
ISBN:


Download Numerical Simulation of Rarefied Gas Flow in Micro and Vacuum Devices Book in PDF, Epub and Kindle

It is well established that non-equilibrium flows cannot properly be described by traditional hydrodynamics, namely, the Navier-Stokes-Fourier (NSF) equations. Such flows occur, for example, in micro-electro-mechanical systems (MEMS), and ultra vacuum systems, where the dimensions of the devices are comparable to the mean free path of a gas molecule. Therefore, the study of non-equilibrium effects in gas flows is extremely important. The general interest of the present study is to explore boundary value problems for moderately rarefied gas flows, with an emphasis on numerical solutions of the regularized 13--moment equations (R13). Boundary conditions for the moment equations are derived based on either phenomenological principles or on microscopic gas-surface scattering models, e.g., Maxwell's accommodation model and the isotropic scattering model.Using asymptotic analysis, several non-linear terms in the R13 equations are transformed into algebraic terms. The reduced equations allow us to obtain numerical solutions for multidimensional boundary value problems, with the same set of boundary conditions for the linearized and fully non-linear equations. Some basic flow configurations are employed to investigate steady and unsteady rarefaction effects in rarefied gas flows, namely, planar and cylindrical Couette flow, stationary heat transfer between two plates, unsteady and oscillatory Couette flow. A comparison with the corresponding results obtained previously by the DSMC method is performed. The influence of rarefaction effects in the lid driven cavity problem is investigated. Solutions obtained from several macroscopic models, in particular the classical NSF equations with jump and slip boundary conditions, and the R13--moment equations are compared. The R13 results compare well with those obtained from more costly solvers for rarefied gas dynamics, such as the Direct Simulation Monte Carlo (DSMC) method. Flow and heat transfer in a bottom heated square cavity in a moderately rarefied gas are investigated using the R13 and NSF equations. The results obtained are compared with those from the DSMC method with emphasis on understanding thermal flow characteristics from the slip flow to the early transition regime. The R13 theory gives satisfying results including flow patterns in fair agreement with DSMC in the transition regime, which the conventional Navier-Stokes-Fourier equations are not able to capture.

Handbook of Numerical Analysis

Handbook of Numerical Analysis
Author: Philippe G. Ciarlet
Publisher: Gulf Professional Publishing
Total Pages: 698
Release: 1990
Genre: Mathematics
ISBN: 9780444509062


Download Handbook of Numerical Analysis Book in PDF, Epub and Kindle

Includes following subjects: Solution of equations in Rn, Finite difference methods, Finite element methods, Techniques of scientific computing, Optimization theory and systems science, Numerical methods for fluids, Numerical methods for solids, Specific applications