Spectroscopic Applications of Terahertz Quantum-Cascade Lasers

Spectroscopic Applications of Terahertz Quantum-Cascade Lasers
Author: Tasmim Alam
Publisher: Cuvillier Verlag
Total Pages: 132
Release: 2020-10-29
Genre: Science
ISBN: 3736962975


Download Spectroscopic Applications of Terahertz Quantum-Cascade Lasers Book in PDF, Epub and Kindle

Quantum cascade lasers (QCLs) are attractive for high-resolution spectroscopy because they can provide high power and a narrow linewidth. They are particularly promising in the terahertz (THz) range since they can be used as local oscillators for heterodyne detection as well as transmitters for direct detection. However, THz QCL-based technologies are still under development and are limited by the lack of frequency tunability as well as the frequency and output power stability for free-running operation. In this dissertation, frequency tuning and linewidth of THz QCLs are studied in detail by using rotational spectroscopic features of molecular species. In molecular spectroscopy, the Doppler eff ect broadens the spectral lines of molecules in the gas phase at thermal equilibrium. Saturated absorption spectroscopy has been performed that allows for sub-Doppler resolution of the spectral features. One possible application is QCL frequency stabilization based on the Lamb dip. Since the tunability of the emission frequency is an essential requirement to use THz QCL for high-resolution spectroscopy, a new method has been developed that relies on near-infrared (NIR) optical excitation of the QCL rear-facet. A wide tuning range has been achieved by using this approach. The scheme is straightforward to implement, and the approach can be readily applied to a large class of THz QCLs. The frequency and output stability of the local oscillator has a direct impact on the performance and consistency of the heterodyne spectroscopy. A technique has been developed for a simultaneous stabilization of the frequency and output power by taking advantage of the frequency and power regulation by NIR excitation. The results presented in this thesis will enable the routine use of THz QCLs for spectroscopic applications in the near future.

Mid-Infrared and Terahertz Quantum Cascade Lasers

Mid-Infrared and Terahertz Quantum Cascade Lasers
Author: Dan Botez
Publisher: Cambridge University Press
Total Pages: 552
Release: 2023-09-14
Genre: Technology & Engineering
ISBN: 1108570607


Download Mid-Infrared and Terahertz Quantum Cascade Lasers Book in PDF, Epub and Kindle

Learn how the rapidly expanding area of mid-infrared and terahertz photonics has been revolutionized in this comprehensive overview. State-of-the-art practical applications are supported by real-life examples and expert guidance. Also featuring fundamental theory enabling you to improve performance of both existing and future devices.

Mid-Infrared and Terahertz Quantum Cascade Lasers

Mid-Infrared and Terahertz Quantum Cascade Lasers
Author: Dan Botez
Publisher: Cambridge University Press
Total Pages: 551
Release: 2023-06-30
Genre: Science
ISBN: 1108427936


Download Mid-Infrared and Terahertz Quantum Cascade Lasers Book in PDF, Epub and Kindle

A state-of-the-art overview of this rapidly expanding field, featuring fundamental theory, practical applications, and real-life examples.

Quantum Cascade Lasers for Terahertz Applications

Quantum Cascade Lasers for Terahertz Applications
Author: Sudeep Khanal
Publisher:
Total Pages: 241
Release: 2017
Genre:
ISBN: 9781369637335


Download Quantum Cascade Lasers for Terahertz Applications Book in PDF, Epub and Kindle

The mid-infrared (lambda ~ 3 -- 30 mum) and terahertz (THz) or far-infrared (lambda ~ 30 -- 300 mum) regions of the electromagnetic spectrum offer unique applications in spectroscopy, sensing, and imaging. However, these longer wavelengths (photon energies 0.4 eV) are difficult to generate with compact solid-state devices owing to the lack of naturally occurring materials with small bandgaps. Quantum-cascade lasers (QCLs) are unipolar devices based on semiconductor superlattices, in which radiation occurs due to intersubband (rather than interband) optical transitions.

Physics and Applications of Terahertz Radiation

Physics and Applications of Terahertz Radiation
Author: Matteo Perenzoni
Publisher: Springer
Total Pages: 257
Release: 2013-10-16
Genre: Science
ISBN: 9400738374


Download Physics and Applications of Terahertz Radiation Book in PDF, Epub and Kindle

This book covers the latest advances in the techniques employed to manage the THz radiation and its potential uses. It has been subdivided in three sections: THz Detectors, THz Sources, Systems and Applications. These three sections will allow the reader to be introduced in a logical way to the physics problems of sensing and generation of the terahertz radiation, the implementation of these devices into systems including other components and finally the exploitation of the equipment for real applications in some different field. All of the sections and chapters can be individually addressed in order to deepen the understanding of a single topic without the need to read the whole book. The THz Detectors section will address the latest developments in detection devices based on three different physical principles: photodetection, thermal power detection, rectification. The THz Sources section will describe three completely different generation methods, operating in three separate scales: quantum cascade lasers, free electron lasers and non-linear optical generation. The Systems and Applications section will take care of introducing many of the aspects needed to move from a device to an equipment perspective: control of terahertz radiation, its use in imaging or in spectroscopy, potential uses in security, and will address also safety issues. The text book is at a level appropriate to graduate level courses up to researchers in the field who require a reference book covering all aspects of terahertz technology.

Development of Terahertz QCLs

Development of Terahertz QCLs
Author: Sushil Kumar (Ph. D.)
Publisher:
Total Pages: 340
Release: 2007
Genre:
ISBN:


Download Development of Terahertz QCLs Book in PDF, Epub and Kindle

The terahertz or the far-infrared frequency range of the electromagnetic spectrum (...) has historically been technologically underdeveloped despite having many potential applications, primarily due to lack of suitable sources of coherent radiation. Following on the remarkable development of mid-infrared (...) quantum-cascade lasers (QCLs) in the past decade, this thesis describes the development of electrically-pumped terahertz quantum-cascade lasers in GaAs/AlsGal_. As heterostructures that span a spectral range of 1.59 - 5.0 THz (...). A quantum-cascade laser (QCL) emits photons due to electronic intersubband transitions in the quantum-wells of a semiconductor heterostructure. The operation of terahertz QCLs at frequencies below the Reststrahlen band in the semiconductor (...), is significantly more challenging as compared to that of the mid-infrared QCLs. Firstly, due to small energy separation between the laser levels various intersubband scattering mechanisms are activated, which make it difficult to selectively depopulate the lower laser level. Additionally, as electrons gain enough kinetic energy in the upper laser level thermally activated longitudinal-optical (LO) phonon scattering reduces the level lifetime and makes it difficult to sustain population inversion at higher temperatures. Secondly, waveguide design for terahertz mode confinement is also more challenging due to higher free-carrier losses in the semiconducting doped regions at the terahertz frequencies. For successful designs reported in this work, the lower radiative state depopulation is achieved by a combination of resonant-tunneling and fast LO phonon scattering, which allow robust operation even at relatively high temperatures. An equally important enabling mechanism for these lasers is the development of metal-metal waveguides, which provide low waveguides losses, and strong mode confinement due to subwavelength mode localization in the vertical dimension. With these techniques some record performances for terahertz QCLs are demonstrated including the highest pulsed operating temperature of 169 K, the highest continuous-wave (cw) operating temperature of 117 K, and the highest optical power output (248 mW in pulsed and 138 mW in cw at 5 K) for any terahertz QCL. Towards the bigger goal of realizing a 1-THz solid-state laser to ultimately bridge the gap between electronic and optical sources of electromagnetic radiation, QCLs with a unique one-well injection scheme, which minimizes intersubband absorption losses that occur at longer wavelengths, are developed. Based on this scheme a QCL operating at 1.59 THz (A - 189 ym) is realized, which is amongst the lowest frequency solid-state lasers that operate without the assistance of a magnetic field. This thesis also reports on the development of distributed-feedback lasers in metal-metal waveguides to obtain single-mode operation, with greater output power and better beam quality. The subwavelength vertical dimension in these waveguides leads to a strongly coupled DFB action and a large reflection from the end-facets, and thus conventional coupled-mode theory is not directly applicable to the DFB design. A design technique with precise control of phase of reflection at the end-facets is developed with the aid of finite-element analysis, and with some additional unique design and fabrication methods, robust DFB operation has been obtained. Single-mode surface-emitting terahertz QCLs operating up to - 150 K are demonstrated, with different grating devices spanning a range of approximately 0.35 THz around v - 3 THz using the same gain medium. A single-lobed far-field radiation pattern, higher output power due to surface-emission, and a relatively small degradation in temperature performance compared to the Fabry-Perot ridge lasers makes these DFB lasers well suited for practical applications that are being targeted by the terahertz quantum-cascade lasers.

Widely Tunable Terahertz Semiconductor Laser Sources

Widely Tunable Terahertz Semiconductor Laser Sources
Author: Aiting Jiang
Publisher:
Total Pages: 204
Release: 2015
Genre:
ISBN:


Download Widely Tunable Terahertz Semiconductor Laser Sources Book in PDF, Epub and Kindle

Terahertz Quantum Cascade Lasers (THz QCLs) and Terahertz Difference Frequency Generation Quantum Cascade Laser sources (DFG-QCLs) are two types of semiconductor THz radiation sources that are compact and amenable to production in mass quantities. THz QCL can generate over 1W of power under cryogenic temperatures, while THz DFG-QCL can be operated under room temperature over 1mW level output. For either case, widely tunable solution is highly desired for spectroscopy applications. For THz QCLs, operation is still limited to cryogenic temperature and broad tuning is not available. Our experimental study shows that using variable barriers is a viable approach to enhance the design space for THz QCLs. We also propose to tune the spectral output of these devices using an optically projected variable distributed feedback grating. Tuning will be achieved by changing the projected grating period. Preliminary experimental results support the idea but higher pumping light intensity is required for this method to work. For THz DFG-QCLs, very broad tuning in 1-6 THz range has been demonstrated using rotating diffraction grating in an external cavity setup. Similar tuning range can also be achieved in a monolithic configuration. Based on the previous work which demonstrated an electrical monolithic tuner with 580 GHz tuning range, we design and test in this dissertation a linear array of 10 DFG-QCL devices to cover a 2 THz tuning range. An independent gain control scheme is developed to achieve high yield (~100%) of individual device. It is implemented via independent current pumping of two electrically isolated sections. Surface DFB grating and independent current pumping scheme used in our DFG QCLs is found to be useful for mid-IR QCL array sources. We propose a longitudinal integration scheme of multiple grating sections. It enables a single ridge to emit single mode radiation at different wavelengths upon selection. This helps to reduce mid-IR QCL array far field span. We demonstrated single ridge devices that can emit 2 or 3 different wavelengths upon selection.