Tensor Algebra And Analysis For Engineers: With Applications To Differential Geometry Of Curves And Surfaces

Tensor Algebra And Analysis For Engineers: With Applications To Differential Geometry Of Curves And Surfaces
Author: Paolo Vannucci
Publisher: World Scientific
Total Pages: 230
Release: 2023-02-27
Genre: Mathematics
ISBN: 9811264821


Download Tensor Algebra And Analysis For Engineers: With Applications To Differential Geometry Of Curves And Surfaces Book in PDF, Epub and Kindle

In modern theoretical and applied mechanics, tensors and differential geometry are two almost essential tools. Unfortunately, in university courses for engineering and mechanics students, these topics are often poorly treated or even completely ignored. At the same time, many existing, very complete texts on tensors or differential geometry are so advanced and written in abstract language that discourage young readers looking for an introduction to these topics specifically oriented to engineering applications.This textbook, mainly addressed to graduate students and young researchers in mechanics, is an attempt to fill the gap. Its aim is to introduce the reader to the modern mathematical tools and language of tensors, with special applications to the differential geometry of curves and surfaces in the Euclidean space. The exposition of the matter is sober, directly oriented to problems that are ordinarily found in mechanics and engineering. Also, the language and symbols are tailored to those usually employed in modern texts of continuum mechanics.Though not exhaustive, as any primer textbook, this volume constitutes a coherent, self-contained introduction to the mathematical tools and results necessary in modern continuum mechanics, concerning vectors, 2nd- and 4th-rank tensors, curves, fields, curvilinear coordinates, and surfaces in the Euclidean space. More than 100 exercises are proposed to the reader, many of them complete the theoretical part through additional results and proofs. To accompany the reader in learning, all the exercises are entirely developed and solved at the end of the book.

Tensor Algebra and Tensor Analysis for Engineers

Tensor Algebra and Tensor Analysis for Engineers
Author: Mikhail Itskov
Publisher: Springer Science & Business Media
Total Pages: 253
Release: 2009-04-30
Genre: Technology & Engineering
ISBN: 3540939075


Download Tensor Algebra and Tensor Analysis for Engineers Book in PDF, Epub and Kindle

There is a large gap between engineering courses in tensor algebra on one hand, and the treatment of linear transformations within classical linear algebra on the other. This book addresses primarily engineering students with some initial knowledge of matrix algebra. Thereby, mathematical formalism is applied as far as it is absolutely necessary. Numerous exercises provided in the book are accompanied by solutions enabling autonomous study. The last chapters deal with modern developments in the theory of isotropic and anisotropic tensor functions and their applications to continuum mechanics and might therefore be of high interest for PhD-students and scientists working in this area.

Tensor Calculus and Differential Geometry for Engineers

Tensor Calculus and Differential Geometry for Engineers
Author: Shahab Sahraee
Publisher: Springer Nature
Total Pages: 684
Release: 2023-12-12
Genre: Technology & Engineering
ISBN: 3031339533


Download Tensor Calculus and Differential Geometry for Engineers Book in PDF, Epub and Kindle

The book contains the basics of tensor algebra as well as a comprehensive description of tensor calculus, both in Cartesian and curvilinear coordinates. Some recent developments in representation theorems and differential forms are included. The last part of the book presents a detailed introduction to differential geometry of surfaces and curves which is based on tensor calculus. By solving numerous exercises, the reader is equipped to properly understand the theoretical background and derivations. Many solved problems are provided at the end of each chapter for in-depth learning. All derivations in this text are carried out line by line which will help the reader to understand the basic ideas. Each figure in the book includes descriptive text that corresponds with the theoretical derivations to facilitate rapid learning.

Tensor Analysis and Its Applications

Tensor Analysis and Its Applications
Author: Quddus Khan
Publisher: Partridge Publishing
Total Pages: 215
Release: 2015-08-27
Genre: Mathematics
ISBN: 1482850680


Download Tensor Analysis and Its Applications Book in PDF, Epub and Kindle

This book is intended to serve as a textbook for undergraduate and postgraduate students of mathematics. It will be useful to the researchers working in the field of differential geometry and its applications to general theory of relativity and other applied areas. It will also be helpful in preparing for the competitive examinations like IAS, IES, NET, PCS, and other higher education tests. The text starts with the basic concepts and results, which shall refer throughout this book and is followed by the study of the tensor algebra and its calculus, consisting the notion of tensor, its operations, and its different types; Christoffels symbols and its properties, the concept of covariant differentiation of tensors and its properties, tensor form of gradient, divergence, laplacian and curl, divergence of a tensor, intrinsic derivatives, and parallel displacement of vectors, Riemanns symbols and its properties, and application of tensor in different areas.

Tensor Analysis and Elementary Differential Geometry for Physicists and Engineers

Tensor Analysis and Elementary Differential Geometry for Physicists and Engineers
Author: Hung Nguyen-Schäfer
Publisher: Springer
Total Pages: 389
Release: 2016-08-16
Genre: Technology & Engineering
ISBN: 3662484978


Download Tensor Analysis and Elementary Differential Geometry for Physicists and Engineers Book in PDF, Epub and Kindle

This book presents tensors and differential geometry in a comprehensive and approachable manner, providing a bridge from the place where physics and engineering mathematics end, and the place where tensor analysis begins. Among the topics examined are tensor analysis, elementary differential geometry of moving surfaces, and k-differential forms. The book includes numerous examples with solutions and concrete calculations, which guide readers through these complex topics step by step. Mindful of the practical needs of engineers and physicists, book favors simplicity over a more rigorous, formal approach. The book shows readers how to work with tensors and differential geometry and how to apply them to modeling the physical and engineering world. The authors provide chapter-length treatment of topics at the intersection of advanced mathematics, and physics and engineering: • General Basis and Bra-Ket Notation • Tensor Analysis • Elementary Differential Geometry • Differential Forms • Applications of Tensors and Differential Geometry • Tensors and Bra-Ket Notation in Quantum Mechanics The text reviews methods and applications in computational fluid dynamics; continuum mechanics; electrodynamics in special relativity; cosmology in the Minkowski four-dimensional space time; and relativistic and non-relativistic quantum mechanics. Tensor Analysis and Elementary Differential Geometry for Physicists and Engineers benefits research scientists and practicing engineers in a variety of fields, who use tensor analysis and differential geometry in the context of applied physics, and electrical and mechanical engineering. It will also interest graduate students in applied physics and engineering.

Introduction to Tensor Analysis and the Calculus of Moving Surfaces

Introduction to Tensor Analysis and the Calculus of Moving Surfaces
Author: Pavel Grinfeld
Publisher: Springer Science & Business Media
Total Pages: 303
Release: 2013-09-24
Genre: Mathematics
ISBN: 1461478677


Download Introduction to Tensor Analysis and the Calculus of Moving Surfaces Book in PDF, Epub and Kindle

This textbook is distinguished from other texts on the subject by the depth of the presentation and the discussion of the calculus of moving surfaces, which is an extension of tensor calculus to deforming manifolds. Designed for advanced undergraduate and graduate students, this text invites its audience to take a fresh look at previously learned material through the prism of tensor calculus. Once the framework is mastered, the student is introduced to new material which includes differential geometry on manifolds, shape optimization, boundary perturbation and dynamic fluid film equations. The language of tensors, originally championed by Einstein, is as fundamental as the languages of calculus and linear algebra and is one that every technical scientist ought to speak. The tensor technique, invented at the turn of the 20th century, is now considered classical. Yet, as the author shows, it remains remarkably vital and relevant. The author’s skilled lecturing capabilities are evident by the inclusion of insightful examples and a plethora of exercises. A great deal of material is devoted to the geometric fundamentals, the mechanics of change of variables, the proper use of the tensor notation and the discussion of the interplay between algebra and geometry. The early chapters have many words and few equations. The definition of a tensor comes only in Chapter 6 – when the reader is ready for it. While this text maintains a consistent level of rigor, it takes great care to avoid formalizing the subject. The last part of the textbook is devoted to the Calculus of Moving Surfaces. It is the first textbook exposition of this important technique and is one of the gems of this text. A number of exciting applications of the calculus are presented including shape optimization, boundary perturbation of boundary value problems and dynamic fluid film equations developed by the author in recent years. Furthermore, the moving surfaces framework is used to offer new derivations of classical results such as the geodesic equation and the celebrated Gauss-Bonnet theorem.

Tensor and Vector Analysis

Tensor and Vector Analysis
Author: C. E. Springer
Publisher: Courier Corporation
Total Pages: 258
Release: 2013-09-26
Genre: Mathematics
ISBN: 048632091X


Download Tensor and Vector Analysis Book in PDF, Epub and Kindle

Assuming only a knowledge of basic calculus, this text's elementary development of tensor theory focuses on concepts related to vector analysis. The book also forms an introduction to metric differential geometry. 1962 edition.

TEXTBOOK OF TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY AND THEIR APPLICATIONS

TEXTBOOK OF TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY AND THEIR APPLICATIONS
Author: Quddus Khan
Publisher: Misha Books
Total Pages: 578
Release: 2020-12-29
Genre: Mathematics
ISBN: 9389055326


Download TEXTBOOK OF TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY AND THEIR APPLICATIONS Book in PDF, Epub and Kindle

This book is intended to serve as a Textbook for Undergraduate and Post - graduate students of Mathematics. It will be useful to the researchers working in the field of Differential geometry and its applications to general theory of relativity and other applied areas. It will also be helpful in preparing for the competitive examinations like IAS, IES, NET, PCS, and UP Higher Education exams. The text starts with a chapter on Preliminaries discussing basic concepts and results which would be taken for general later in the subsequent chapters of this book. This is followed by the Study of the Tensors Algebra and its operations and types, Christoffel's symbols and its properties, the concept of covariant differentiation and its properties, Riemann's symbols and its properties, and application of tensor in different areas in part – I and the study of the Theory of Curves in Space, Concepts of a Surface and Fundamental forms, Envelopes and Developables, Curvature of Surface and Lines of Curvature, Fundamental Equations of Surface Theory, Theory of Geodesics, Differentiable Manifolds and Riemannian Manifold and Application of Differential Geometry in Part –II. KEY FEATURES: Provides basic Concepts in an easy to understand style; Presentation of the subject in a natural way; Includes a large number of solved examples and illuminating illustrations; Exercise questions at the end of the topic and at the end of each chapter; Proof of the theorems are given in an easy to understand style; Neat and clean figures are given at appropriate places; Notes and remarks are given at appropriate places.

Tensor Analysis with Applications in Mechanics

Tensor Analysis with Applications in Mechanics
Author: L. P. Lebedev
Publisher: World Scientific
Total Pages: 378
Release: 2010
Genre: Mathematics
ISBN: 9814313998


Download Tensor Analysis with Applications in Mechanics Book in PDF, Epub and Kindle

1. Preliminaries. 1.1. The vector concept revisited. 1.2. A first look at tensors. 1.3. Assumed background. 1.4. More on the notion of a vector. 1.5. Problems -- 2. Transformations and vectors. 2.1. Change of basis. 2.2. Dual bases. 2.3. Transformation to the reciprocal frame. 2.4. Transformation between general frames. 2.5. Covariant and contravariant components. 2.6. The cross product in index notation. 2.7. Norms on the space of vectors. 2.8. Closing remarks. 2.9. Problems -- 3. Tensors. 3.1. Dyadic quantities and tensors. 3.2. Tensors from an operator viewpoint. 3.3. Dyadic components under transformation. 3.4. More dyadic operations. 3.5. Properties of second-order tensors. 3.6. Eigenvalues and eigenvectors of a second-order symmetric tensor. 3.7. The Cayley-Hamilton theorem. 3.8. Other properties of second-order tensors. 3.9. Extending the Dyad idea. 3.10. Tensors of the fourth and higher orders. 3.11. Functions of tensorial arguments. 3.12. Norms for tensors, and some spaces. 3.13. Differentiation of tensorial functions. 3.14. Problems -- 4. Tensor fields. 4.1. Vector fields. 4.2. Differentials and the nabla operator. 4.3. Differentiation of a vector function. 4.4. Derivatives of the frame vectors. 4.5. Christoffel coefficients and their properties. 4.6. Covariant differentiation. 4.7. Covariant derivative of a second-order tensor. 4.8. Differential operations. 4.9. Orthogonal coordinate systems. 4.10. Some formulas of integration. 4.11. Problems -- 5. Elements of differential geometry. 5.1. Elementary facts from the theory of curves. 5.2. The torsion of a curve. 5.3. Frenet-Serret equations. 5.4. Elements of the theory of surfaces. 5.5. The second fundamental form of a surface. 5.6. Derivation formulas. 5.7. Implicit representation of a curve; contact of curves. 5.8. Osculating paraboloid. 5.9. The principal curvatures of a surface. 5.10. Surfaces of revolution. 5.11. Natural equations of a curve. 5.12. A word about rigor. 5.13. Conclusion. 5.14. Problems -- 6. Linear elasticity. 6.1. Stress tensor. 6.2. Strain tensor. 6.3. Equation of motion. 6.4. Hooke's law. 6.5. Equilibrium equations in displacements. 6.6. Boundary conditions and boundary value problems. 6.7. Equilibrium equations in stresses. 6.8. Uniqueness of solution for the boundary value problems of elasticity. 6.9. Betti's reciprocity theorem. 6.10. Minimum total energy principle. 6.11. Ritz's method. 6.12. Rayleigh's variational principle. 6.13. Plane waves. 6.14. Plane problems of elasticity. 6.15. Problems -- 7. Linear elastic shells. 7.1. Some useful formulas of surface theory. 7.2. Kinematics in a neighborhood of [symbol]. 7.3. Shell equilibrium equations. 7.4. Shell deformation and strains; Kirchhoff's hypotheses. 7.5. Shell energy. 7.6. Boundary conditions. 7.7. A few remarks on the Kirchhoff-Love theory. 7.8. Plate theory. 7.9. On Non-classical theories of plates and shells