Synthesis and characterization of magnetic nanolaminated carbides

Synthesis and characterization of magnetic nanolaminated carbides
Author: Andrejs Petruhins
Publisher: Linköping University Electronic Press
Total Pages: 78
Release: 2018-03-15
Genre:
ISBN: 917685342X


Download Synthesis and characterization of magnetic nanolaminated carbides Book in PDF, Epub and Kindle

MAX phases are a group of nanolaminated ternary carbides and nitrides, with a composition expressed by the general formula Mn+1AXn (?? = 1 ? 3), where M is a transition metal, A is an A-group element, and X is carbon and/or nitrogen. MAX phases have attracted interest due to their unique combination of metallic and ceramic properties, related to their inherently laminated structure of a transition metal carbide (Mn+1Xn) layer interleaved by an A-group metal layer. This Thesis explores synthesis and characterization of magnetic MAX phases, where the A-group element is gallium (Ga). Due to the low melting point of Ga (T = 30 °C), conventional thin film synthesis methods become challenging, as the material is in liquid form at typical process temperatures. Development of existing methods has therefore been investigated, for reliable/reproducible synthesis routes, including sputtering from a liquid target, and resulting high quality material. Routes for minimizing trial-and-error procedures during optimization of thin film synthesis have also been studied, allowing faster identification of optimal deposition conditions and a simplified transfer of essential deposition parameters between different deposition systems. A large part of this Thesis is devoted towards synthesis of MAX phase thin films in the Cr-Mn-Ga-C system. First, through process development, thin films of Cr2GaC were deposited by magnetron sputtering. The films were epitaxial, however with small amount of impurity phase Cr3Ga, as confirmed by X-ray diffraction (XRD) measurements. The film structure was confirmed by scanning transmission electron microscopy (STEM) and the composition by energy dispersive X-ray spectroscopy (EDX) inside the TEM. Inspired by predictive ab initio calculations, the new MAX phase Mn2GaC was successfully synthesized in thin film form by magnetron sputtering. Structural parameters and magnetic properties were analysed. The material was found to have two magnetic transitions in the temperature range 3 K to 750 K, with a first order transition at around 214 K, going from non-collinear antiferromagnetic state at lower temperature to an antiferromagnetic state at higher temperature. The Neél temperature was determined to be 507 K, changing from an antiferromagnetic to a paramagnetic state. Above 800 K, Mn2GaC decomposes. Furthermore, magnetostrictive, magnetoresistive and magnetocaloric properties of the material were iv determined, among which a drastic change in lattice parameters upon the first magnetic transition was observed. This may be of interest for magnetocaloric applications. Synthesis of both Cr2GaC and Mn2GaC in thin film form opens the possibility to tune the magnetic properties through a solid solution on the transition metal site, by alloying the aforementioned Cr2GaC with Mn, realizing (Cr1-xMnx)2GaC. From a compound target with a Cr:Mn ratio of 1:1, thin films of (Cr0.5Mn0.5)2GaC were synthesized, confirmed by TEM-EDX. Optimized structure was obtained by deposition on MgO substrates at a deposition temperature of 600 ºC. The thin films were phase pure and of high structural quality, allowing magnetic measurements. Using vibrating sample magnetometry (VSM), it was found that (Cr0.5Mn0.5)2GaC has a ferromagnetic component in the temperature range from 30 K to 300 K, with the measured magnetic moment at high field decreasing by increasing temperature. The remanent moment and coercive field is small, 0.036 ?B, and 12 mT at 30 K, respectively. Using ferromagnetic resonance spectroscopy, it was also found that the material has pure spin magnetism, as indicated by the determined spectroscopic splitting factor g = 2.00 and a negligible magnetocrystalline anisotropy energy. Fuelled by the recent discoveries of in-plane chemically ordered quaternary MAX phases, so called i-MAX phases, and guided by ab initio calculations, new members within this family, based on Cr and Mn, were synthesized by pressureless sintering methods, realizing (Cr2/3Sc1/3)2GaC and (Mn2/3Sc1/3)2GaC. Their structural properties were determined. Through these phases, the Mn content is the highest obtained in a bulk MAX phase to date. This work has further developed synthesis processes for sputtering from liquid material, for an optimized route to achieve thin films of controlled composition and a high structural quality. Furthermore, through this work, Mn has been added as a new element in the family of MAX phase elements. It has also been shown, that alloying with different content of Mn gives rise to varying magnetic properties in MAX phases. As a result of this Thesis, it is expected that the MAX phase family can be further expanded, with more members of new compositions and new properties.

Synthesis and Characterization of Cobalt Carbide Based Nanomaterials

Synthesis and Characterization of Cobalt Carbide Based Nanomaterials
Author: Zachary John Huba
Publisher:
Total Pages: 156
Release: 2014
Genre: Chemistry, Inorganic
ISBN:


Download Synthesis and Characterization of Cobalt Carbide Based Nanomaterials Book in PDF, Epub and Kindle

Permanent magnets are used heavily for multiple applications in industry and current electronic technologies. However, the current permanent landscape is muddled by high cost of materials and insufficient magnetic or thermal properties. The primary focus of this dissertation work is the synthesis and optimization of a new permanent magnetic material, in the form of cobalt carbide nanomaterials. The optimization revolved around controlling the crystal phase and particle shape of synthesized cobalt carbide particles; these parameters have significant impact on the observed magnetic properties of magnetic nanoparticles. Co3C was identified to be the preferred crystal phase, leading to better magnetic properties. Cobalt Fumarate was found to be the ideal precursor to synthesize anisotropic Co3C particles and enhance magnetic properties of the synthesized cobalt carbide particles. Lastly, an ethanol based reduction system was employed to develop the greener synthesis of Co and Ni magnetic particles.

Synthesis and Characterization of Magnetic Cabides and Oxides Nanomaterials

Synthesis and Characterization of Magnetic Cabides and Oxides Nanomaterials
Author: Hei Man Tsui
Publisher:
Total Pages:
Release: 2018
Genre: Chemistry, Inorganic
ISBN:


Download Synthesis and Characterization of Magnetic Cabides and Oxides Nanomaterials Book in PDF, Epub and Kindle

The design and development of nanoparticles is of great interest in the current energy and electronic industry. However, based on the current materials available the production cost can be high with insignificant magnetic and mechanical properties. Specifically, rare-earth magnetic materials composed of neodymium and samarium are known for their high magnetic performance, however, due to the cost of development there is a need to develop a versatile and cost effective material. Alternatively, cobalt carbide nanomaterials have shown to be a promising alternative for rare-earth free magnets as they exhibit comparable properties as hexaferrite magnetic materials. The primary goal of this dissertation focuses on the development of nanoparticles for permeant magnetic, and magnetic refrigeration applications. The first part of this work focuses on the synthesis of cobalt carbide (CoxC, x=2,3) nanoparticles using a novel polyol synthesis method by introducing a small amount of Ru, Cu, or Au as nucleating agent. It was found that the morphology and magnetic properties of the as-synthesized CoxC nanoparticles change as a result of directional growth of nanoparticles using nucleating agents. Needle-like particle morphology ranges from 20-50 nm in width and as long as 1 [micro]m in length were synthesized using Ru as nucleating agent. These particles exhibit magnetization saturation of 33.5 emu/g with a coercivity of 2870 Oe and a maximum energy product 1.92 MGOe (BHmax) observed. Particle morphology is a critical aspect in the development of magnetic nanoparticles as anisotropic particles have shown increased coercivity and magnetic properties. These CoxC nanomaterials have a higher maximum energy product compared to previous work providing further insight into the development of non-rare earth magnetic material. The second part of this dissertation work focuses on the sol-gel synthesis of perovskite LaCaMnO3(LCMO) nanomaterials. In this process, various chain lengths of polyethylene glycol (PEG) was added into a solution consisting of La, Ca, and Mn salts. The solution was left for the gelation process, and high temperature sintering to obtain the final product. By varying the polymer chain of the PEG, the size of the as synthesized LaCaMnO3 nanomaterials were altered. The as-synthesized LCMO nanomaterials have shown a maximum change in magnetic entropy ( -[delta]Sm) was found to be 19.3 Jkg−1K−1 at 278 K for a field change of 0-3 T and 8.7 Jkg−1K−1 for a field change of 0-1 T. This is a significant improvement in comparison to current literature of the material suggesting that this is a promising alternative to Gd materials that is prone to oxidation. With additional development, LCMO or related maganites could lead to application in commercial technologies.

2D Metal Carbides and Nitrides (MXenes)

2D Metal Carbides and Nitrides (MXenes)
Author: Babak Anasori
Publisher: Springer Nature
Total Pages: 534
Release: 2019-10-30
Genre: Technology & Engineering
ISBN: 3030190269


Download 2D Metal Carbides and Nitrides (MXenes) Book in PDF, Epub and Kindle

This book describes the rapidly expanding field of two-dimensional (2D) transition metal carbides and nitrides (MXenes). It covers fundamental knowledge on synthesis, structure, and properties of these new materials, and a description of their processing, scale-up and emerging applications. The ways in which the quickly expanding family of MXenes can outperform other novel nanomaterials in a variety of applications, spanning from energy storage and conversion to electronics; from water science to transportation; and in defense and medical applications, are discussed in detail.

MXenes and their Composites

MXenes and their Composites
Author: Kishor Kumar Sadasivuni
Publisher: Elsevier
Total Pages: 796
Release: 2021-10-07
Genre: Technology & Engineering
ISBN: 0128225866


Download MXenes and their Composites Book in PDF, Epub and Kindle

MXenes and their Composites: Synthesis, Properties and Potential Applications presents a state of the art overview of the recent developments on the synthesis, functionalization, properties and emerging applications of two-dimensional (2D) MXenes and their composites.The book systematically describes the state-of-the-art knowledge and fundamentals of MXene synthesis, structure, surface chemistry and functionalization. The book also discusses the unique electronic, optical, mechanical and topological properties of MXenes. Besides, this book covers the various emerging applications of MXenes and their composites across different fields such as energy storage and conversion, gas sensing and biosensing, rechargeable lithium and sodium-ion batteries, lithium-sulphur and multivalent batteries, electromagnetic interference shielding, hybrid capacitors and supercapacitors, hydrogen storage, catalysis and photoelectrocatalysis, gas separation and water desalination, environmental remediation and medical and biomedical applications. All these applications have been efficiently discussed in the specific chapters and in each case, the processing of MXene composites has also been discussed.This book will be an excellent reference for scientists and engineers across various disciplines and industries working in the field of highly promising 2D MXenes and their composites. The book will also act as a guide for academic researchers, material scientists, and advanced students in investigating the new applications of 2D MXenes based materials. Covers fundamentals of technologically important MAX phases, MXene derivatives, MXene synthesis methods, intercalation and delamination strategies, surface functionalization, fundamental characteristics and properties Demonstrates major application areas of MXenes, including catalytic, energy storage and energy generation, flexible electronics, EMI shielding, sensors and biosensors, medical and biomedical, gas separation and water desalination Presents a detailed discussion on the processing and performance of various MXenes towards different applications

Synthesis and Characterization of Carbon Magnetic Nanoparticles

Synthesis and Characterization of Carbon Magnetic Nanoparticles
Author: Sunilsingh Gusain
Publisher:
Total Pages:
Release: 2011
Genre:
ISBN:


Download Synthesis and Characterization of Carbon Magnetic Nanoparticles Book in PDF, Epub and Kindle

Carbon incorporated iron nanoparticles (Fe-CNPs) were successfully synthesized using ultrasonic cavitation in Benzene. This novel method of carbon nanoparticle (CNP) synthesis is a very cost-effective and versatile as one can easily tune the microstructure and magnetic properties by varying few parameters, for e.g. voltage. The Fe-CNP complexes are produced due to the electric plasma discharge generated between the electrodes in an ultrasonic cavitation field of liquid benzene. The constituent of the CNPs can be easily modified by different choice of electrode materials- iron and graphite. The resultant Fe-CNPs were characterized by high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy to reveal the presence of different forms of carbon and iron carbide particles. TEM results of Fe-CNP and CNP show lattice fringe and a diffraction pattern suggesting crystalline form of carbon form. Raman spectroscopy of Fe-CNPs shows similarity to that of diamond powder thus suggesting that the crystallinity of the samples can be easily varied as well. The magnetic properties were investigated using superconducting quantum interference measurement devise (SQUID). The Fe-CNP show zero coercivity and increase in saturation magnetization with increase in synthesis voltage. On the other hand, the CNP produced using graphite electrodes are found to be magnetic in nature. Chemical analysis shows that the Fe- CNPs have iron constituent of ~3%. Biological applications of Fe-CNPs have been discussed.

Titanium Carbide MXenes

Titanium Carbide MXenes
Author: Muhammad Tahir
Publisher: John Wiley & Sons
Total Pages: 262
Release: 2024-03-25
Genre: Technology & Engineering
ISBN: 3527350748


Download Titanium Carbide MXenes Book in PDF, Epub and Kindle

Discover the future of solar energy with this introduction to an essential new family of materials MXenes are a recently-discovered family of two-dimensional organic compounds formed from transition metal carbides. Their unique properties, such as high stability and electron conductivity, have made them a sought-after commodity with many industrial applications in cutting-edge industries. In particular, titanium carbide MXenes look poised to have significant applications in the solar energy industry, with potentially revolutionary consequences for the sustainable energy future. Titanium Carbide MXenes offers a thorough and accessible introduction to this family of compounds and their possible applications. It begins by surveying the fundamentals of the MXene groups, before characterizing titanium carbide MXenes and their processes of synthesis. It then moves on to discuss applications, current and future. The result is a must-read for researchers and professionals looking to synthesize and construct these materials and apply them in sustainable industry. Titanium Carbide MXenes readers will also find: Detailed treatment of MXenes including nitrides composites, perovskites composites, and more Discusses applications in photocatalytic CO2 reduction, hydrogen production, water splitting, and more Roughly 100 figures illustrating key concepts Titanium Carbide MXenes is a must-have for materials scientists, catalytic chemists, and scientists in industry.