Status of the NASA Stirling Radioisotope Project

Status of the NASA Stirling Radioisotope Project
Author: National Aeronautics and Space Adm Nasa
Publisher: Independently Published
Total Pages: 26
Release: 2019-01-13
Genre: Science
ISBN: 9781793925725


Download Status of the NASA Stirling Radioisotope Project Book in PDF, Epub and Kindle

Free-piston Stirling power conversion has been considered a candidate for radioisotope power systems for space for more than a decade. Prior to the free-piston Stirling architecture, systems were designed with kinematic Stirling engines that used linkages and rotary alternators to convert heat to electricity. These systems were able to achieve long life by lightly loading the linkages; however, the live was nonetheless limited. When the free-piston configuration was initially proposed, it was thought to be attractive due to the relatively high conversion efficiency, acceptable mass, and the potential for long life and high reliability based on wear-free operation. These features have consistently been recognized by teams that have studied technology options for radioisotope space power systems. Since free-piston Stirling power conversion was first considered for space power applications, there have been major advances in three general areas of development: hardware that has demonstrated long-life and reliability, the success achieved by Stirling cryocoolers in space, and the overall developmental maturity of the technology for both space and terrestrial applications. Based on these advances, free-piston Stirling convertors are currently being developed for space power, and for a number of terrestrial applications. They commonly operate with the power, efficiency, life, and reliability as intended, and much of the development now centers on system integration. This paper will summarize the accomplishments of free-piston Stirling power conversion technology over the past decade, review the status of development with regard to space power, and discuss the challenges that remain. Schreiber, Jeffrey G. Glenn Research Center WBS 138494.04.01.01

Status of the NASA Stirling Radioisotope Project

Status of the NASA Stirling Radioisotope Project
Author: National Aeronaut Administration (Nasa)
Publisher:
Total Pages: 26
Release: 2020-07-28
Genre:
ISBN:


Download Status of the NASA Stirling Radioisotope Project Book in PDF, Epub and Kindle

Free-piston Stirling power conversion has been considered a candidate for radioisotope power systems for space for more than a decade. Prior to the free-piston Stirling architecture, systems were designed with kinematic Stirling engines that used linkages and rotary alternators to convert heat to electricity. These systems were able to achieve long life by lightly loading the linkages; however, the live was nonetheless limited. When the free-piston configuration was initially proposed, it was thought to be attractive due to the relatively high conversion efficiency, acceptable mass, and the potential for long life and high reliability based on wear-free operation. These features have consistently been recognized by teams that have studied technology options for radioisotope space power systems. Since free-piston Stirling power conversion was first considered for space power applications, there have been major advances in three general areas of development: hardware that has demonstrated long-life and reliability, the success achieved by Stirling cryocoolers in space, and the overall developmental maturity of the technology for both space and terrestrial applications. Based on these advances, free-piston Stirling convertors are currently being developed for space power, and for a number of terrestrial applications. They commonly operate with the power, efficiency, life, and reliability as intended, and much of the development now centers on system integration. This paper will summarize the accomplishments of free-piston Stirling power conversion technology over the past decade, review the status of development with regard to space power, and discuss the challenges that remain. Schreiber, Jeffrey G. Glenn Research Center NASA/TM-2007-214804, E-15937 WBS 138494.04.01.01 STIRLING ENGINES; NUCLEAR ELECTRIC POWER GENERATION; FREE-PISTON ENGINES; MECHANICAL ENGINEERING; TECHNOLOGY UTILIZATION; RADIOISOTOPE HEAT SOURCES; AC GENERATORS; KINEMATICS; CRYOGENIC COOLING; RADIATORS; PANELS; SIMULATORS; VIBRATION TESTS; RELIABILITY ANALYSIS; CONTROLLERS; RANDOM VIBRATION; SYSTEMS INTEGRATION

Status of the Nasa Stirling Radioisotope Project

Status of the Nasa Stirling Radioisotope Project
Author: Jeffrey G. Schreiber
Publisher: BiblioGov
Total Pages: 28
Release: 2013-07
Genre:
ISBN: 9781289228132


Download Status of the Nasa Stirling Radioisotope Project Book in PDF, Epub and Kindle

Free-piston Stirling power conversion has been considered a candidate for radioisotope power systems for space for more than a decade. Prior to the free-piston Stirling architecture, systems were designed with kinematic Stirling engines that used linkages and rotary alternators to convert heat to electricity. These systems were able to achieve long life by lightly loading the linkages; however, the live was nonetheless limited. When the free-piston configuration was initially proposed, it was thought to be attractive due to the relatively high conversion efficiency, acceptable mass, and the potential for long life and high reliability based on wear-free operation. These features have consistently been recognized by teams that have studied technology options for radioisotope space power systems. Since free-piston Stirling power conversion was first considered for space power applications, there have been major advances in three general areas of development: hardware that has demonstrated long-life and reliability, the success achieved by Stirling cryocoolers in space, and the overall developmental maturity of the technology for both space and terrestrial applications. Based on these advances, free-piston Stirling convertors are currently being developed for space power, and for a number of terrestrial applications. They commonly operate with the power, efficiency, life, and reliability as intended, and much of the development now centers on system integration. This paper will summarize the accomplishments of free-piston Stirling power conversion technology over the past decade, review the status of development with regard to space power, and discuss the challenges that remain.

Radioisotope Power Systems

Radioisotope Power Systems
Author: National Research Council
Publisher: National Academies Press
Total Pages: 69
Release: 2009-07-14
Genre: Science
ISBN: 0309141761


Download Radioisotope Power Systems Book in PDF, Epub and Kindle

Spacecraft require electrical energy. This energy must be available in the outer reaches of the solar system where sunlight is very faint. It must be available through lunar nights that last for 14 days, through long periods of dark and cold at the higher latitudes on Mars, and in high-radiation fields such as those around Jupiter. Radioisotope power systems (RPSs) are the only available power source that can operate unconstrained in these environments for the long periods of time needed to accomplish many missions, and plutonium-238 (238Pu) is the only practical isotope for fueling them. Plutonium-238 does not occur in nature. The committee does not believe that there is any additional 238Pu (or any operational 238Pu production facilities) available anywhere in the world.The total amount of 238Pu available for NASA is fixed, and essentially all of it is already dedicated to support several pending missions-the Mars Science Laboratory, Discovery 12, the Outer Planets Flagship 1 (OPF 1), and (perhaps) a small number of additional missions with a very small demand for 238Pu. If the status quo persists, the United States will not be able to provide RPSs for any subsequent missions.

Supporting Development for the Stirling Radioisotope Generator and Advanced Stirling Technology Development at NASA Glenn Research Center

Supporting Development for the Stirling Radioisotope Generator and Advanced Stirling Technology Development at NASA Glenn Research Center
Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
Total Pages: 26
Release: 2018-06-24
Genre:
ISBN: 9781721785940


Download Supporting Development for the Stirling Radioisotope Generator and Advanced Stirling Technology Development at NASA Glenn Research Center Book in PDF, Epub and Kindle

A high-efficiency, 110-We (watts electric) Stirling Radioisotope Generator (SRG110) for possible use on future NASA Space Science missions is being developed by the Department of Energy, Lockheed Martin, Stirling Technology Company (STC), and NASA Glenn Research Center (GRC). Potential mission use includes providing spacecraft onboard electric power for deep space missions and power for unmanned Mars rovers. GRC is conducting an in-house supporting technology project to assist in SRG110 development. One-, three-, and six-month heater head structural benchmark tests have been completed in support of a heater head life assessment. Testing is underway to evaluate the key epoxy bond of the permanent magnets to the linear alternator stator lamination stack. GRC has completed over 10,000 hours of extended duration testing of the Stirling convertors for the SRG110, and a three-year test of two Stirling convertors in a thermal vacuum environment will be starting shortly. GRC is also developing advanced technology for Stirling convertors, aimed at substantially improving the specific power and efficiency of the convertor and the overall generator. Sunpower, Inc. has begun the development of a lightweight Stirling convertor, under a NASA Research Announcement (NRA) award, that has the potential to double the system specific power to about 8 We/kg. GRC has performed random vibration testing of a lower-power version of this convertor to evaluate robustness for surviving launch vibrations. STC has also completed the initial design of a lightweight convertor. Status of the development of a multi-dimensional computational fluid dynamics code and high-temperature materials work on advanced superalloys, refractory metal alloys, and ceramics are also discussed. Thieme, Lanny G. and Schreiber, Jeffrey G. Glenn Research Center NASA/TM-2005-213628, E?15111

Supporting Development for the Stirling Radioisotope Generator and Advanced Stirling Technology Development at NASA Glenn

Supporting Development for the Stirling Radioisotope Generator and Advanced Stirling Technology Development at NASA Glenn
Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
Total Pages: 30
Release: 2018-06-24
Genre:
ISBN: 9781721781270


Download Supporting Development for the Stirling Radioisotope Generator and Advanced Stirling Technology Development at NASA Glenn Book in PDF, Epub and Kindle

A high-efficiency, 110-W(sub e) (watts electric) Stirling Radioisotope Generator (SRG110) for possible use on future NASA Space Science missions is being developed by the Department of Energy, Lockheed Martin, Stirling Technology Company (STC), and NASA Glenn Research Center (GRC). Potential mission use includes providing spacecraft onboard electric power for deep space missions and power for unmanned Mars rovers. GRC is conducting an in-house supporting technology project to assist in SRG110 development. One-, three-, and six-month heater head structural benchmark tests have been completed in support of a heater head life assessment. Testing is underway to evaluate the key epoxy bond of the permanent magnets to the linear alternator stator lamination stack. GRC has completed over 10,000 hours of extended duration testing of the Stirling convertors for the SRG110, and a three-year test of two Stirling convertors in a thermal vacuum environment will be starting shortly. GRC is also developing advanced technology for Stirling convertors, aimed at substantially improving the specific power and efficiency of the convertor and the overall generator. Sunpower, Inc. has begun the development of a lightweight Stirling convertor, under a NASA Research Announcement (NRA) award, that has the potential to double the system specific power to about 8 W(sub e) per kilogram. GRC has performed random vibration testing of a lowerpower version of this convertor to evaluate robustness for surviving launch vibrations. STC has also completed the initial design of a lightweight convertor. Status of the development of a multi-dimensional computational fluid dynamics code and high-temperature materials work on advanced superalloys, refractory metal alloys, and ceramics are also discussed. Thieme, Lanny G. and Schreiber, Jeffrey G. Glenn Research Center NASA/TM-2005-213409, E-14924

Nasa's Advanced Radioisotope Power Conversion Technology Development Status

Nasa's Advanced Radioisotope Power Conversion Technology Development Status
Author: National Aeronautics and Space Adm Nasa
Publisher: Independently Published
Total Pages: 28
Release: 2019-01-13
Genre: Science
ISBN: 9781793917928


Download Nasa's Advanced Radioisotope Power Conversion Technology Development Status Book in PDF, Epub and Kindle

NASA's Advanced Radioisotope Power Systems (ARPS) project is developing the next generation of radioisotope power conversion technologies that will enable future missions that have requirements that cannot be met by either photovoltaic systems or by current radioisotope power systems (RPSs). Requirements of advanced RPSs include high efficiency and high specific power (watts/kilogram) in order to meet future mission requirements with less radioisotope fuel and lower mass so that these systems can meet requirements for a variety of future space applications, including continual operation surface missions, outer-planetary missions, and solar probe. These advances would enable a factor of 2 to 4 decrease in the amount of fuel required to generate electrical power. Advanced RPS development goals also include long-life, reliability, and scalability. This paper provides an update on the contractual efforts under the Radioisotope Power Conversion Technology (RPCT) NASA Research Announcement (NRA) for research and development of Stirling, thermoelectric, and thermophotovoltaic power conversion technologies. The paper summarizes the current RPCT NRA efforts with a brief description of the effort, a status and/or summary of the contractor's key accomplishments, a discussion of upcoming plans, and a discussion of relevant system-level benefits and implications. The paper also provides a general discussion of the benefits from the development of these advanced power conversion technologies and the eventual payoffs to future missions (discussing system benefits due to overall improvements in efficiency, specific power, etc.). Anderson, David J. and Sankovic, John and Wilt, David and Abelson, Robert D. and Fleurial, Jean-Pierre Glenn Research Center; Jet Propulsion Laboratory WBS 138494.01.04.01

Supporting Development for the Stirling Radioisotope Generator and Advanced Stirling Technology Development at Nasa Glenn Research Center

Supporting Development for the Stirling Radioisotope Generator and Advanced Stirling Technology Development at Nasa Glenn Research Center
Author: Lanny G. Thieme
Publisher: BiblioGov
Total Pages: 28
Release: 2013-07
Genre:
ISBN: 9781289162993


Download Supporting Development for the Stirling Radioisotope Generator and Advanced Stirling Technology Development at Nasa Glenn Research Center Book in PDF, Epub and Kindle

A high-efficiency, 110-We (watts electric) Stirling Radioisotope Generator (SRG110) for possible use on future NASA Space Science missions is being developed by the Department of Energy, Lockheed Martin, Stirling Technology Company (STC), and NASA Glenn Research Center (GRC). Potential mission use includes providing spacecraft onboard electric power for deep space missions and power for unmanned Mars rovers. GRC is conducting an in-house supporting technology project to assist in SRG110 development. One-, three-, and six-month heater head structural benchmark tests have been completed in support of a heater head life assessment. Testing is underway to evaluate the key epoxy bond of the permanent magnets to the linear alternator stator lamination stack. GRC has completed over 10,000 hours of extended duration testing of the Stirling convertors for the SRG110, and a three-year test of two Stirling convertors in a thermal vacuum environment will be starting shortly. GRC is also developing advanced technology for Stirling convertors, aimed at substantially improving the specific power and efficiency of the convertor and the overall generator. Sunpower, Inc. has begun the development of a lightweight Stirling convertor, under a NASA Research Announcement (NRA) award, that has the potential to double the system specific power to about 8 We/kg. GRC has performed random vibration testing of a lower-power version of this convertor to evaluate robustness for surviving launch vibrations. STC has also completed the initial design of a lightweight convertor. Status of the development of a multi-dimensional computational fluid dynamics code and high-temperature materials work on advanced superalloys, refractory metal alloys, and ceramics are also discussed.