A Class of High Resolution Explicit and Implicit Shock-Capturing Methods

A Class of High Resolution Explicit and Implicit Shock-Capturing Methods
Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
Total Pages: 228
Release: 2018-07-23
Genre:
ISBN: 9781723496356


Download A Class of High Resolution Explicit and Implicit Shock-Capturing Methods Book in PDF, Epub and Kindle

An attempt is made to give a unified and generalized formulation of a class of high resolution, explicit and implicit shock capturing methods, and to illustrate their versatility in various steady and unsteady complex shock wave computations. Included is a systematic review of the basic design principle of the various related numerical methods. Special emphasis is on the construction of the basis nonlinear, spatially second and third order schemes for nonlinear scalar hyperbolic conservation laws and the methods of extending these nonlinear scalar schemes to nonlinear systems via the approximate Riemann solvers and the flux vector splitting approaches. Generalization of these methods to efficiently include equilibrium real gases and large systems of nonequilibrium flows are discussed. Some issues concerning the applicability of these methods that were designed for homogeneous hyperbolic conservation laws to problems containing stiff source terms and shock waves are also included. The performance of some of these schemes is illustrated by numerical examples for 1-, 2- and 3-dimensional gas dynamics problems. Yee, H. C. Ames Research Center NASA-TM-101088, A-89091, NAS 1.15:101088 ...

Advancement of Shock Capturing Computational Fluid Dynamics Methods

Advancement of Shock Capturing Computational Fluid Dynamics Methods
Author: Keiichi Kitamura
Publisher: Springer Nature
Total Pages: 136
Release: 2020-10-31
Genre: Science
ISBN: 9811590117


Download Advancement of Shock Capturing Computational Fluid Dynamics Methods Book in PDF, Epub and Kindle

This book offers a compact primer on advanced numerical flux functions in computational fluid dynamics (CFD). It comprehensively introduces readers to methods used at the forefront of compressible flow simulation research. Further, it provides a comparative evaluation of the methods discussed, helping readers select the best numerical flux function for their specific needs. The first two chapters of the book reviews finite volume methods and numerical functions, before discussing issues commonly encountered in connection with each. The third and fourth chapter, respectively, address numerical flux functions for ideal gases and more complex fluid flow cases— multiphase flows, supercritical fluids and magnetohydrodynamics. In closing, the book highlights methods that provide high levels of accuracy. The concise content provides an overview of recent advances in CFD methods for shockwaves. Further, it presents the author’s insights into the advantages and disadvantages of each method, helping readers implement the numerical methods in their own research.

Front-tracking Shock-capturing Method for Two Fluids

Front-tracking Shock-capturing Method for Two Fluids
Author: Mehdi Vahab
Publisher:
Total Pages:
Release: 2014
Genre:
ISBN: 9781321213164


Download Front-tracking Shock-capturing Method for Two Fluids Book in PDF, Epub and Kindle

This dissertation presents a new high-order front tracking method for two-phase hyperbolic systems of conservation laws separated by a contact discontinuity. A review of existing methods for moving and/or irregular boundaries shows the significance of accurate geometry data and flux calculation near the interface to achieve a high order method. A general method for hyperbolic systems of conservation laws is presented along with the implementations of numerical methods for simulations of gas dynamics in 2-D using the Euler equations. Convergence tests show the new method is second order accurate for smooth solutions and first order in presence of shocks. Also the new method is used for simulation of Richtmyer-Meshkov instability, in which results are in agreement with both theoretical andexperimental approaches.

Handbook of Shock Waves, Three Volume Set

Handbook of Shock Waves, Three Volume Set
Author: Gabi Ben-Dor
Publisher: Elsevier
Total Pages: 2188
Release: 2000-10-18
Genre: Science
ISBN: 0080533728


Download Handbook of Shock Waves, Three Volume Set Book in PDF, Epub and Kindle

The Handbook of Shock Waves contains a comprehensive, structured coverage of research topics related to shock wave phenomena including shock waves in gases, liquids, solids, and space. Shock waves represent an extremely important physical phenomena which appears to be of special practical importance in three major fields: compressible flow (aerodynamics), materials science, and astrophysics. Shock waves comprise a phenomenon that occurs when pressure builds to force a reaction, i.e. sonic boom that occurs when a jet breaks the speed of sound.This Handbook contains experimental, theoretical, and numerical results which never before appeared under one cover; the first handbook of its kind.The Handbook of Shock Waves is intended for researchers and engineers active in shock wave related fields. Additionally, R&D establishments, applied science & research laboratories and scientific and engineering libraries both in universities and government institutions. As well as, undergraduate and graduate students in fluid mechanics, gas dynamics, and physics. Key Features* Ben-Dor is known as one of the founders of the field of shock waves* Covers a broad spectrum of shock wave research topics* Provides a comprehensive description of various shock wave related subjects* First handbook ever to include under one separate cover: experimental, theoretical, and numerical results

Numerical Methods for Conservation Laws

Numerical Methods for Conservation Laws
Author: LEVEQUE
Publisher: Birkhäuser
Total Pages: 221
Release: 2013-11-11
Genre: Science
ISBN: 3034851162


Download Numerical Methods for Conservation Laws Book in PDF, Epub and Kindle

These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. vVithout the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy.

OpenFOAM®

OpenFOAM®
Author: J. Miguel Nóbrega
Publisher: Springer
Total Pages: 536
Release: 2019-01-24
Genre: Technology & Engineering
ISBN: 3319608460


Download OpenFOAM® Book in PDF, Epub and Kindle

This book contains selected papers of the 11th OpenFOAM® Workshop that was held in Guimarães, Portugal, June 26 - 30, 2016. The 11th OpenFOAM® Workshop had more than 140 technical/scientific presentations and 30 courses, and was attended by circa 300 individuals, representing 180 institutions and 30 countries, from all continents. The OpenFOAM® Workshop provided a forum for researchers, industrial users, software developers, consultants and academics working with OpenFOAM® technology. The central part of the Workshop was the two-day conference, where presentations and posters on industrial applications and academic research were shown. OpenFOAM® (Open Source Field Operation and Manipulation) is a free, open source computational toolbox that has a larger user base across most areas of engineering and science, from both commercial and academic organizations. As a technology, OpenFOAM® provides an extensive range of features to solve anything from complex fluid flows involving chemical reactions, turbulence and heat transfer, to solid dynamics and electromagnetics, among several others. Additionally, the OpenFOAM technology offers complete freedom to customize and extend its functionalities.