Set-Valued, Convex, and Nonsmooth Analysis in Dynamics and Control

Set-Valued, Convex, and Nonsmooth Analysis in Dynamics and Control
Author: Rafal K. Goebel
Publisher: SIAM
Total Pages: 234
Release: 2024-06-26
Genre: Mathematics
ISBN: 1611977983


Download Set-Valued, Convex, and Nonsmooth Analysis in Dynamics and Control Book in PDF, Epub and Kindle

Set-valued analysis, convex analysis, and nonsmooth analysis are relatively modern branches of mathematical analysis that have become increasingly relevant in current control theory and control engineering literature. This book serves as a broad introduction to analytical tools in these fields and to their applications in dynamical and control systems and is the first to cover these topics with this scope and at this level. Both continuous-time and discrete-time mutlivalued dynamics, modeled by differential and difference inclusions, are considered. Set-Valued, Convex, and Nonsmooth Analysis in Dynamics and Control: An Introduction is aimed at graduate students in control engineering and applied mathematics and researchers in control engineering who have no prior exposure to set-valued, convex, and nonsmooth analysis. The book will also be of interest to advanced undergraduate mathematics students and mathematicians with no prior exposure to the topic. The expected mathematical background is a course on nonlinear differential equations / dynamical systems and a course on real analysis. Knowledge of some control theory is helpful, but not essential.

Optimal Control Via Nonsmooth Analysis

Optimal Control Via Nonsmooth Analysis
Author: Philip Daniel Loewen
Publisher: American Mathematical Soc.
Total Pages: 112
Release: 1993
Genre: Control theory
ISBN: 9780821869963


Download Optimal Control Via Nonsmooth Analysis Book in PDF, Epub and Kindle

This book provides a complete and unified treatment of deterministic problems of dynamic optimization, from the classical themes of the calculus of variations to the forefront of modern research in optimal control. At the heart of the presentation is nonsmooth analysis, a theory of local approximation developed over the last twenty years to provide useful first-order information about sets and functions lying beyond the reach of classical analysis. The book includes an intuitive and geometrically transparent approach to nonsmooth analysis, serving not only to introduce the basic ideas, but also to illuminate the calculations and derivations in the applied sections dealing with the calculus of variations and optimal control. Written in a lively, engaging style and stocked with numerous figures and practice problems, this book offers an ideal introduction to this vigorous field of current research. It is suitable as a graduate text for a one-semester course in optimal control or as a manual for self-study. Each chapter closes with a list of references to ease the reader's transition from active learner to contributing researcher.

Dynamics and Control of Trajectory Tubes

Dynamics and Control of Trajectory Tubes
Author: Alexander B. Kurzhanski
Publisher: Springer
Total Pages: 457
Release: 2014-10-27
Genre: Mathematics
ISBN: 331910277X


Download Dynamics and Control of Trajectory Tubes Book in PDF, Epub and Kindle

This monograph presents theoretical methods involving the Hamilton–Jacobi–Bellman formalism in conjunction with set-valued techniques of nonlinear analysis to solve significant problems in dynamics and control. The emphasis is on issues of reachability, feedback control synthesis under complex state constraints, hard or double bounds on controls, and performance in finite time. Guaranteed state estimation, output feedback control, and hybrid dynamics are also discussed. Although the focus is on systems with linear structure, the authors indicate how to apply each approach to nonlinear and nonconvex systems. The main theoretical results lead to computational schemes based on extensions of ellipsoidal calculus that provide complete solutions to the problems. These computational schemes in turn yield software tools that can be applied effectively to high-dimensional systems. Ellipsoidal Techniques for Problems of Dynamics and Control: Theory and Computation will interest graduate and senior undergraduate students, as well as researchers and practitioners interested in control theory, its applications, and its computational realizations.

Geometric Control and Nonsmooth Analysis

Geometric Control and Nonsmooth Analysis
Author: Fabio Ancona
Publisher: World Scientific
Total Pages: 377
Release: 2008
Genre: Mathematics
ISBN: 9812776060


Download Geometric Control and Nonsmooth Analysis Book in PDF, Epub and Kindle

The aim of this volume is to provide a synthetic account of past research, to give an up-to-date guide to current intertwined developments of control theory and nonsmooth analysis, and also to point to future research directions.

Variational and Monotonicity Methods in Nonsmooth Analysis

Variational and Monotonicity Methods in Nonsmooth Analysis
Author: Nicuşor Costea
Publisher: Springer Nature
Total Pages: 450
Release: 2021-09-20
Genre: Mathematics
ISBN: 3030816710


Download Variational and Monotonicity Methods in Nonsmooth Analysis Book in PDF, Epub and Kindle

This book provides a modern and comprehensive presentation of a wide variety of problems arising in nonlinear analysis, game theory, engineering, mathematical physics and contact mechanics. It includes recent achievements and puts them into the context of the existing literature. The volume is organized in four parts. Part I contains fundamental mathematical results concerning convex and locally Lipschits functions. Together with the Appendices, this foundational part establishes the self-contained character of the text. As the title suggests, in the following sections, both variational and topological methods are developed based on critical and fixed point results for nonsmooth functions. The authors employ these methods to handle the exemplary problems from game theory and engineering that are investigated in Part II, respectively Part III. Part IV is devoted to applications in contact mechanics. The book will be of interest to PhD students and researchers in applied mathematics as well as specialists working in nonsmooth analysis and engineering.

A Variational Approach to Nonsmooth Dynamics

A Variational Approach to Nonsmooth Dynamics
Author: Samir Adly
Publisher: Springer
Total Pages: 168
Release: 2018-02-19
Genre: Mathematics
ISBN: 3319686585


Download A Variational Approach to Nonsmooth Dynamics Book in PDF, Epub and Kindle

This brief examines mathematical models in nonsmooth mechanics and nonregular electrical circuits, including evolution variational inequalities, complementarity systems, differential inclusions, second-order dynamics, Lur'e systems and Moreau's sweeping process. The field of nonsmooth dynamics is of great interest to mathematicians, mechanicians, automatic controllers and engineers. The present volume acknowledges this transversality and provides a multidisciplinary view as it outlines fundamental results in nonsmooth dynamics and explains how to use them to study various problems in engineering. In particular, the author explores the question of how to redefine the notion of dynamical systems in light of modern variational and nonsmooth analysis. With the aim of bridging between the communities of applied mathematicians, engineers and researchers in control theory and nonlinear systems, this brief outlines both relevant mathematical proofs and models in unilateral mechanics and electronics.

Nonsmooth Mechanics

Nonsmooth Mechanics
Author: Bernard Brogliato
Publisher: Springer
Total Pages: 657
Release: 2016-02-29
Genre: Technology & Engineering
ISBN: 3319286641


Download Nonsmooth Mechanics Book in PDF, Epub and Kindle

Now in its third edition, this standard reference is a comprehensive treatment of nonsmooth mechanical systems refocused to give more prominence to issues connected with control and modelling. It covers Lagrangian and Newton–Euler systems, detailing mathematical tools such as convex analysis and complementarity theory. The ways in which nonsmooth mechanics influence and are influenced by well-posedness analysis, numerical analysis and simulation, modelling and control are explained. Contact/impact laws, stability theory and trajectory-tracking control are given detailed exposition connected by a mathematical framework formed from complementarity systems and measure-differential inclusions. Links are established with electrical circuits with set-valued nonsmooth elements as well as with other nonsmooth dynamical systems like impulsive and piecewise linear systems. Nonsmooth Mechanics (third edition) retains the topical structure familiar from its predecessors but has been substantially rewritten, edited and updated to account for the significant body of results that have emerged in the twenty-first century—including developments in: the existence and uniqueness of solutions; impact models; extension of the Lagrange–Dirichlet theorem and trajectory tracking; and well-posedness of contact complementarity problems with and without friction. Many figures (both new and redrawn to improve the clarity of the presentation) and examples are used to illustrate the theoretical developments. Material introducing the mathematics of nonsmooth mechanics has been improved to reflect the broad range of applications interest that has developed since publication of the second edition. The detail of some mathematical essentials is provided in four appendices. With its improved bibliography of over 1,300 references and wide-ranging coverage, Nonsmooth Mechanics (third edition) is sure to be an invaluable resource for researchers and postgraduates studying the control of mechanical systems, robotics, granular matter and relevant fields of applied mathematics. “The book’s two best features, in my view are its detailed survey of the literature... and its detailed presentation of many examples illustrating both the techniques and their limitations... For readers interested in the field, this book will serve as an excellent introductory survey.” Andrew Lewis in Automatica “It is written with clarity, contains the latest research results in the area of impact problems for rigid bodies and is recommended for both applied mathematicians and engineers.” Panagiotis D. Panagiotopoulos in Mathematical Reviews “The presentation is excellent in combining rigorous mathematics with a great number of examples... allowing the reader to understand the basic concepts.” Hans Troger in Mathematical Abstracts “/i>

Geometric Control and Nonsmooth Analysis

Geometric Control and Nonsmooth Analysis
Author: Fabio Ancona
Publisher: World Scientific
Total Pages: 377
Release: 2008
Genre: Mathematics
ISBN: 9812776079


Download Geometric Control and Nonsmooth Analysis Book in PDF, Epub and Kindle

The aim of this volume is to provide a synthetic account of past research, to give an up-to-date guide to current intertwined developments of control theory and nonsmooth analysis, and also to point to future research directions.

Nonsmooth Mechanics

Nonsmooth Mechanics
Author: Bernard Brogliato
Publisher: Springer Science & Business Media
Total Pages: 565
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 1447105575


Download Nonsmooth Mechanics Book in PDF, Epub and Kindle

Thank you for opening the second edition of this monograph, which is devoted to the study of a class of nonsmooth dynamical systems of the general form: ::i; = g(x,u) (0. 1) f(x, t) 2: 0 where x E JRn is the system's state vector, u E JRm is the vector of inputs, and the function f (-, . ) represents a unilateral constraint that is imposed on the state. More precisely, we shall restrict ourselves to a subclass of such systems, namely mechanical systems subject to unilateral constraints on the position, whose dynamical equations may be in a first instance written as: ii= g(q,q,u) (0. 2) f(q, t) 2: 0 where q E JRn is the vector of generalized coordinates of the system and u is an in put (or controller) that generally involves a state feedback loop, i. e. u= u(q, q, t, z), with z= Z(z, q, q, t) when the controller is a dynamic state feedback. Mechanical systems composed of rigid bodies interacting fall into this subclass. A general prop erty of systems as in (0. 1) and (0. 2) is that their solutions are nonsmooth (with respect to time): Nonsmoothness arises primarily from the occurence of impacts (or collisions, or percussions) in the dynamical behaviour, when the trajectories attain the surface f(x, t) = O. They are necessary to keep the trajectories within the subspace = {x : f(x, t) 2: O} of the system's state space.