Robust and Traffic Aware Medium Access Control Mechanisms for Energy-efficient Mm-wave Wireless Network-on-chip Architectures

Robust and Traffic Aware Medium Access Control Mechanisms for Energy-efficient Mm-wave Wireless Network-on-chip Architectures
Author: Naseef Mansoor
Publisher:
Total Pages: 126
Release: 2017
Genre: Computer networks
ISBN:


Download Robust and Traffic Aware Medium Access Control Mechanisms for Energy-efficient Mm-wave Wireless Network-on-chip Architectures Book in PDF, Epub and Kindle

"To cater to the performance/watt needs, processors with multiple processing cores on the same chip have become the de-facto design choice. In such multicore systems, Network-on-Chip (NoC) serves as a communication infrastructure for data transfer among the cores on the chip. However, conventional metallic interconnect based NoCs are constrained by their long multi-hop latencies and high power consumption, limiting the performance gain in these systems. Among, different alternatives, due to the CMOS compatibility and energy-efficiency, low-latency wireless interconnect operating in the millimeter wave (mm-wave) band is nearer term solution to this multi-hop communication problem. This has led to the recent exploration of millimeter-wave (mm-wave) wireless technologies in wireless NoC architectures (WiNoC). To realize the mm-wave wireless interconnect in a WiNoC, a wireless interface (WI) equipped with on-chip antenna and transceiver circuit operating at 60GHz frequency range is integrated to the ports of some NoC switches. The WIs are also equipped with a medium access control (MAC) mechanism that ensures a collision free and energy-efficient communication among the WIs located at different parts on the chip. However, due to shrinking feature size and complex integration in CMOS technology, high-density chips like multicore systems are prone to manufacturing defects and dynamic faults during chip operation. Such failures can result in permanently broken wireless links or cause the MAC to malfunction in a WiNoC. Consequently, the energy-efficient communication through the wireless medium will be compromised. Furthermore, the energy efficiency in the wireless channel access is also dependent on the traffic pattern of the applications running on the multicore systems. Due to the bursty and self-similar nature of the NoC traffic patterns, the traffic demand of the WIs can vary both spatially and temporally. Ineffective management of such traffic variation of the WIs, limits the performance and energy benefits of the novel mm-wave interconnect technology. Hence, to utilize the full potential of the novel mm-wave interconnect technology in WiNoCs, design of a simple, fair, robust, and efficient MAC is of paramount importance. The main goal of this dissertation is to propose the design principles for robust and traffic-aware MAC mechanisms to provide high bandwidth, low latency, and energy-efficient data communication in mm-wave WiNoCs. The proposed solution has two parts. In the first part, we propose the cross-layer design methodology of robust WiNoC architecture that can minimize the effect of permanent failure of the wireless links and recover from transient failures caused by single event upsets (SEU). Then, in the second part, we present a traffic-aware MAC mechanism that can adjust the transmission slots of the WIs based on the traffic demand of the WIs. The proposed MAC is also robust against the failure of the wireless access mechanism. Finally, as future research directions, this idea of traffic awareness is extended throughout the whole NoC by enabling adaptiveness in both wired and wireless interconnection fabric."--Abstract.

Architecting a One-to-many Traffic-aware and Secure Millimeter-wave Wireless Network-in-package Interconnect for Multichip Systems

Architecting a One-to-many Traffic-aware and Secure Millimeter-wave Wireless Network-in-package Interconnect for Multichip Systems
Author: M. Meraj Ahmed
Publisher:
Total Pages: 166
Release: 2021
Genre: Interconnects (Integrated circuit technology)
ISBN:


Download Architecting a One-to-many Traffic-aware and Secure Millimeter-wave Wireless Network-in-package Interconnect for Multichip Systems Book in PDF, Epub and Kindle

"With the aggressive scaling of device geometries, the yield of complex Multi Core Single Chip(MCSC) systems with many cores will decrease due to the higher probability of manufacturing defects especially, in dies with a large area. Disintegration of large System-on-Chips(SoCs) into smaller chips called chiplets has shown to improve the yield and cost of complex systems. Therefore, platform-based computing modules such as embedded systems and micro-servers have already adopted Multi Core Multi Chip (MCMC) architectures over MCSC architectures. Due to the scaling of memory intensive parallel applications in such systems, data is more likely to be shared among various cores residing in different chips resulting in a significant increase in chip-to-chip traffic, especially one-to-many traffic. This one-to-many traffic is originated mainly to maintain cache-coherence between many cores residing in multiple chips. Besides, one-to-many traffics are also exploited by many parallel programming models, system-level synchronization mechanisms, and control signals. How-ever, state-of-the-art Network-on-Chip (NoC)-based wired interconnection architectures do not provide enough support as they handle such one-to-many traffic as multiple unicast trafficusing a multi-hop MCMC communication fabric. As a result, even a small portion of such one-to-many traffic can significantly reduce system performance as traditional NoC-basedinterconnect cannot mask the high latency and energy consumption caused by chip-to-chipwired I/Os. Moreover, with the increase in memory intensive applications and scaling of MCMC systems, traditional NoC-based wired interconnects fail to provide a scalable inter-connection solution required to support the increased cache-coherence and synchronization generated one-to-many traffic in future MCMC-based High-Performance Computing (HPC) nodes. Therefore, these computation and memory intensive MCMC systems need an energy-efficient, low latency, and scalable one-to-many (broadcast/multicast) traffic-aware interconnection infrastructure to ensure high-performance. Research in recent years has shown that Wireless Network-in-Package (WiNiP) architectures with CMOS compatible Millimeter-Wave (mm-wave) transceivers can provide a scalable, low latency, and energy-efficient interconnect solution for on and off-chip communication. In this dissertation, a one-to-many traffic-aware WiNiP interconnection architecture with a starvation-free hybrid Medium Access Control (MAC), an asymmetric topology, and a novel flow control has been proposed. The different components of the proposed architecture are individually one-to-many traffic-aware and as a system, they collaborate with each other to provide required support for one-to-many traffic communication in a MCMC environment. It has been shown that such interconnection architecture can reduce energy consumption and average packet latency by 46.96% and 47.08% respectively for MCMC systems. Despite providing performance enhancements, wireless channel, being an unguided medium, is vulnerable to various security attacks such as jamming induced Denial-of-Service (DoS), eavesdropping, and spoofing. Further, to minimize the time-to-market and design costs, modern SoCs often use Third Party IPs (3PIPs) from untrusted organizations. An adversary either at the foundry or at the 3PIP design house can introduce a malicious circuitry, to jeopardize an SoC. Such malicious circuitry is known as a Hardware Trojan (HT). An HTplanted in the WiNiP from a vulnerable design or manufacturing process can compromise a Wireless Interface (WI) to enable illegitimate transmission through the infected WI resulting in a potential DoS attack for other WIs in the MCMC system. Moreover, HTs can be used for various other malicious purposes, including battery exhaustion, functionality subversion, and information leakage. This information when leaked to a malicious external attackercan reveals important information regarding the application suites running on the system, thereby compromising the user profile. To address persistent jamming-based DoS attack in WiNiP, in this dissertation, a secure WiNiP interconnection architecture for MCMC systems has been proposed that re-uses the one-to-many traffic-aware MAC and existing Design for Testability (DFT) hardware along with Machine Learning (ML) approach. Furthermore, a novel Simulated Annealing (SA)-based routing obfuscation mechanism was also proposed toprotect against an HT-assisted novel traffic analysis attack. Simulation results show that,the ML classifiers can achieve an accuracy of 99.87% for DoS attack detection while SA-basedrouting obfuscation could reduce application detection accuracy to only 15% for HT-assistedtraffic analysis attack and hence, secure the WiNiP fabric from age-old and emerging attacks."--Abstract.

Nanoscale Networking and Communications Handbook

Nanoscale Networking and Communications Handbook
Author: John R. Vacca
Publisher: CRC Press
Total Pages: 640
Release: 2019-07-05
Genre: Computers
ISBN: 1498727328


Download Nanoscale Networking and Communications Handbook Book in PDF, Epub and Kindle

This comprehensive handbook serves as a professional reference as well as a practitioner's guide to today's most complete and concise view of nanoscale networking and communications. It offers in-depth coverage of theory, technology, and practice as they relate to established technologies and recent advancements. It explores practical solutions to a wide range of nanoscale networking and communications issues. Individual chapters, authored by leading experts in the field, address the immediate and long-term challenges in the authors' respective areas of expertise.

Design and Analysis of Medium Access Control Protocols for Broadband Wireless Networks

Design and Analysis of Medium Access Control Protocols for Broadband Wireless Networks
Author: Lin Cai
Publisher:
Total Pages: 169
Release: 2009
Genre:
ISBN:


Download Design and Analysis of Medium Access Control Protocols for Broadband Wireless Networks Book in PDF, Epub and Kindle

The next-generation wireless networks are expected to integrate diverse network architectures and various wireless access technologies to provide a robust solution for ubiquitous broadband wireless access, such as wireless local area networks (WLANs), Ultra-Wideband (UWB), and millimeter-wave (mmWave) based wireless personal area networks (WPANs), etc. To enhance the spectral efficiency and link reliability, smart antenna systems have been proposed as a promising candidate for future broadband access networks. To effectively exploit the increased capabilities of the emerging wireless networks, the different network characteristics and the underlying physical layer features need to be considered in the medium access control (MAC) design, which plays a critical role in providing efficient and fair resource sharing among multiple users. In this thesis, we comprehensively investigate the MAC design in both single- and multi-hop broadband wireless networks, with and without infrastructure support.

Sustainable Wireless Network-on-Chip Architectures

Sustainable Wireless Network-on-Chip Architectures
Author: Jacob Murray
Publisher: Morgan Kaufmann
Total Pages: 163
Release: 2016-03-25
Genre: Computers
ISBN: 0128036516


Download Sustainable Wireless Network-on-Chip Architectures Book in PDF, Epub and Kindle

Sustainable Wireless Network-on-Chip Architectures focuses on developing novel Dynamic Thermal Management (DTM) and Dynamic Voltage and Frequency Scaling (DVFS) algorithms that exploit the advantages inherent in WiNoC architectures. The methodologies proposed—combined with extensive experimental validation—collectively represent efforts to create a sustainable NoC architecture for future many-core chips. Current research trends show a necessary paradigm shift towards green and sustainable computing. As implementing massively parallel energy-efficient CPUs and reducing resource consumption become standard, and their speed and power continuously increase, energy issues become a significant concern. The need for promoting research in sustainable computing is imperative. As hundreds of cores are integrated in a single chip, designing effective packages for dissipating maximum heat is infeasible. Moreover, technology scaling is pushing the limits of affordable cooling, thereby requiring suitable design techniques to reduce peak temperatures. Addressing thermal concerns at different design stages is critical to the success of future generation systems. DTM and DVFS appear as solutions to avoid high spatial and temporal temperature variations among NoC components, and thereby mitigate local network hotspots. Defines new complex, sustainable network-on-chip architectures to reduce network latency and energy Develops topology-agnostic dynamic thermal management and dynamic voltage and frequency scaling techniques Describes joint strategies for network- and core-level sustainability Discusses novel algorithms that exploit the advantages inherent in Wireless Network-on-Chip architectures

Using Proportional-integral-differential Approach for Dynamic Traffic Prediction in Wireless Network-on-chip

Using Proportional-integral-differential Approach for Dynamic Traffic Prediction in Wireless Network-on-chip
Author: Abhishek Vashist
Publisher:
Total Pages: 55
Release: 2017
Genre: Interconnects (Integrated circuit technology)
ISBN:


Download Using Proportional-integral-differential Approach for Dynamic Traffic Prediction in Wireless Network-on-chip Book in PDF, Epub and Kindle

"The massive integration of cores in multi-core system has enabled chip designer to design systems while meeting the power performance demands of the applications. Wireless interconnection has emerged as an energy efficient solution to the challenges of multi-hop communication over the wireline paths in conventional Networks-on-Chips (NoCs). However, to ensure the full benefits of this novel interconnect technology, design of simple, fair and efficient Medium Access Control (MAC) mechanism to grant access to the on-chip wireless communication channel is needed. Moreover, to adapt to the varying traffic demands from the applications running on a multicore environment, MAC mechanisms should dynamically adjust the transmission slots of the wireless interfaces (WIs). To ensure an efficient utilization of the wireless medium in a Wireless NoC (WiNoC), in this work we present the design of prediction model that is used by two dynamic MAC mechanism to predict the traffic demand of the WIs and respond accordingly by adjusting transmission slots of the WIs. Through system level simulations, we show that the traffic aware MAC mechanisms are more energy efficient as well as capable of sustaining higher data bandwidth in WiNoCs."--Abstract.

Adaptive Code Division Multiple Access Protocol for Wireless Network-on-chip Architectures

Adaptive Code Division Multiple Access Protocol for Wireless Network-on-chip Architectures
Author: Vineeth Vijayakumaran
Publisher:
Total Pages: 120
Release: 2012
Genre: Code division multiple access
ISBN:


Download Adaptive Code Division Multiple Access Protocol for Wireless Network-on-chip Architectures Book in PDF, Epub and Kindle

"Massive levels of integration following Moore's Law ushered in a paradigm shift in the way on-chip interconnections were designed. With higher and higher number of cores on the same die traditional bus based interconnections are no longer a scalable communication infrastructure. On-chip networks were proposed enabled a scalable plug-and-play mechanism for interconnecting hundreds of cores on the same chip. Wired interconnects between the cores in a traditional Network-on-Chip (NoC) system, becomes a bottleneck with increase in the number of cores thereby increasing the latency and energy to transmit signals over them. Hence, there has been many alternative emerging interconnect technologies proposed, namely, 3D, photonic and multi-band RF interconnects. Although they provide better connectivity, higher speed and higher bandwidth compared to wired interconnects; they also face challenges with heat dissipation and manufacturing difficulties. On-chip wireless interconnects is one other alternative proposed which doesn't need physical interconnection layout as data travels over the wireless medium. They are integrated into a hybrid NOC architecture consisting of both wired and wireless links, which provides higher bandwidth, lower latency, lesser area overhead and reduced energy dissipation in communication. However, as the bandwidth of the wireless channels is limited, an efficient media access control (MAC) scheme is required to enhance the utilization of the available bandwidth. This thesis proposes using a multiple access mechanism such as Code Division Multiple Access (CDMA) to enable multiple transmitter-receiver pairs to send data over the wireless channel simultaneously. It will be shown that such a hybrid wireless NoC with an efficient CDMA based MAC protocol can significantly increase the performance of the system while lowering the energy dissipation in data transfer. In this work it is shown that the wireless NoC with the proposed CDMA based MAC protocol outperformed the wired counterparts and several other wireless architectures proposed in literature in terms of bandwidth and packet energy dissipation. Significant gains were observed in packet energy dissipation and bandwidth even with scaling the system to higher number of cores. Non-uniform traffic simulations showed that the proposed CDMA-WiNoC was consistent in bandwidth across all traffic patterns. It is also shown that the CDMA based MAC scheme does not introduce additional reliability concerns in data transfer over the on-chip wireless interconnects."--Abstract.

Distributed Medium Access Control in Wireless Networks

Distributed Medium Access Control in Wireless Networks
Author: Ping Wang
Publisher: Springer Science & Business Media
Total Pages: 117
Release: 2013-03-23
Genre: Computers
ISBN: 1461466024


Download Distributed Medium Access Control in Wireless Networks Book in PDF, Epub and Kindle

This brief investigates distributed medium access control (MAC) with QoS provisioning for both single- and multi-hop wireless networks including wireless local area networks (WLANs), wireless ad hoc networks, and wireless mesh networks. For WLANs, an efficient MAC scheme and a call admission control algorithm are presented to provide guaranteed QoS for voice traffic and, at the same time, increase the voice capacity significantly compared with the current WLAN standard. In addition, a novel token-based scheduling scheme is proposed to provide great flexibility and facility to the network service provider for service class management. Also proposed is a novel busy-tone based distributed MAC scheme for wireless ad hoc networks and a collision-free MAC scheme for wireless mesh networks, respectively, taking the different network characteristics into consideration. The proposed schemes enhance the QoS provisioning capability to real-time traffic and, at the same time, significantly improve the system throughput and fairness performance for data traffic, as compared with the most popular IEEE 802.11 MAC scheme.

Combined Dynamic Thermal Management Exploiting Broadcast-capable Wireless Network-on-chip Architecture

Combined Dynamic Thermal Management Exploiting Broadcast-capable Wireless Network-on-chip Architecture
Author: Niraj Vasudevan
Publisher:
Total Pages: 94
Release: 2016
Genre: Integrated circuits
ISBN:


Download Combined Dynamic Thermal Management Exploiting Broadcast-capable Wireless Network-on-chip Architecture Book in PDF, Epub and Kindle

"With the continuous scaling of device dimensions, the number of cores on a single die is constantly increasing. This integration of hundreds of cores on a single die leads to high power dissipation and thermal issues in modern Integrated Circuits (ICs). This causes problems related to reliability, timing violations and lifetime of electronic devices. Dynamic Thermal Management (DTM) techniques have emerged as potential solutions that mitigate the increasing temperatures on a die. However, considering the scaling of system sizes and the adoption of the Network-on-Chip (NoC) paradigm to serve as the interconnection fabric exacerbates the problem as both cores and NoC elements contribute to the increased heat dissipation on the chip. Typically, DTM techniques can either be proactive or reactive. Proactive DTM techniques, where the system has the ability to predict the thermal profile of the chip ahead of time are more desirable than reactive DTM techniques where the system utilizes thermal sensors to determine the current temperature of the chip. Moreover, DTM techniques either address core or NoC level thermal issues separately. Hence, this thesis proposes a combined proactive DTM technique that integrates both core level and NoC level DTM techniques. The combined DTM mechanism includes a dynamic temperature-aware routing approach for the NoC level elements, and includes task reallocation heuristics for the core level elements. On-chip wireless interconnects recently envisioned to enable energy-efficient data exchange between cores in a multicore chip will be used to provide a broadcast-capable medium to efficiently distribute thermal control messages to trigger and manage the DTM. Combining the proactive DTM technique with on-chip wireless interconnects, the on-chip temperature is restricted within target temperatures without significantly affecting the performance of the NoC based interconnection fabric of the multicore chip."--Abstract.

Wireless NoC and Voltage Frequency Island Co-design for Energy-efficient Manycore Platforms

Wireless NoC and Voltage Frequency Island Co-design for Energy-efficient Manycore Platforms
Author: Ryan Gary Kim
Publisher:
Total Pages: 105
Release: 2016
Genre:
ISBN:


Download Wireless NoC and Voltage Frequency Island Co-design for Energy-efficient Manycore Platforms Book in PDF, Epub and Kindle

The achievable energy savings in a VFI-enabled manycore system depends on the control mechanism for V/F tuning. A simple control module can statically tune the voltage/frequency (V/F) of each VFI to the average workload requirements of the application. This allows large energy savings while ensuring that the system is able to accomplish its task within the specified time-frame.