Reuse of Treated Internal Or External Wastewaters in the Cooling Systems of Coal-Based Thermoelectric Power Plants

Reuse of Treated Internal Or External Wastewaters in the Cooling Systems of Coal-Based Thermoelectric Power Plants
Author:
Publisher:
Total Pages:
Release: 2009
Genre:
ISBN:


Download Reuse of Treated Internal Or External Wastewaters in the Cooling Systems of Coal-Based Thermoelectric Power Plants Book in PDF, Epub and Kindle

This study evaluated the feasibility of using three impaired waters - secondary treated municipal wastewater, passively treated abandoned mine drainage (AMD), and effluent from ash sedimentation ponds at power plants - for use as makeup water in recirculating cooling water systems at thermoelectric power plants. The evaluation included assessment of water availability based on proximity and relevant regulations as well as feasibility of managing cooling water quality with traditional chemical management schemes. Options for chemical treatment to prevent corrosion, scaling, and biofouling were identified through review of current practices, and were tested at bench and pilot-scale. Secondary treated wastewater is the most widely available impaired water that can serve as a reliable source of cooling water makeup. There are no federal regulations specifically related to impaired water reuse but a number of states have introduced regulations with primary focus on water aerosol 'drift' emitted from cooling towers, which has the potential to contain elevated concentrations of chemicals and microorganisms and may pose health risk to the public. It was determined that corrosion, scaling, and biofouling can be controlled adequately in cooling systems using secondary treated municipal wastewater at 4-6 cycles of concentration. The high concentration of dissolved solids in treated AMD rendered difficulties in scaling inhibition and requires more comprehensive pretreatment and scaling controls. Addition of appropriate chemicals can adequately control corrosion, scaling and biological growth in ash transport water, which typically has the best water quality among the three waters evaluated in this study. The high TDS in the blowdown from pilot-scale testing units with both passively treated mine drainage and secondary treated municipal wastewater and the high sulfate concentration in the mine drainage blowdown water were identified as the main challenges for blowdown disposal. Membrane treatment (nanofiltration or reverse osmosis) can be employed to reduce TDS and sulfate concentrations to acceptable levels for reuse of the blowdown in the cooling systems as makeup water.

Mineral Scales and Deposits

Mineral Scales and Deposits
Author: Zahid Amjad
Publisher: Elsevier
Total Pages: 785
Release: 2015-05-21
Genre: Technology & Engineering
ISBN: 0444627529


Download Mineral Scales and Deposits Book in PDF, Epub and Kindle

Mineral Scales and Deposits: Scientific and Technological Approaches presents, in an integrated way, the problem of scale deposits (precipitation/crystallization of sparingly-soluble salts) in aqueous systems, both industrial and biological. It covers several fundamental aspects, also offering an applications’ perspective, with the ultimate goal of helping the reader better understand the underlying mechanisms of scale formation, while also assisting the user/reader to solve scale-related challenges. It is ideal for scientists/experts working in academia, offering a number of crystal growth topics with an emphasis on mechanistic details, prediction modules, and inhibition/dispersion chemistry, amongst others. In addition, technologists, consultants, plant managers, engineers, and designers working in industry will find a field-friendly overview of scale-related challenges and technological options for their mitigation. Provides a unique, detailed focus on scale deposits, includes the basic science and mechanisms of scale formation Present a field-friendly overview of scale-related challenges and technological options for their mitigation Correlates chemical structure to performance Provides guidelines for easy assessment of a particular case, also including solutions Includes an extensive list of industrial case studies for reference

Sustainable Water Technologies

Sustainable Water Technologies
Author: Daniel H. Chen
Publisher: CRC Press
Total Pages: 333
Release: 2016-10-14
Genre: Technology & Engineering
ISBN: 1315349604


Download Sustainable Water Technologies Book in PDF, Epub and Kindle

Development of advanced technologies is a critical component in overcoming the looming water crisis. Stressing emerging technologies and strategies that facilitate water sustainability for future generations, the second volume in the two-volume set Sustainable Water Management and Technologies provides current and forthcoming technologies research, development, and applications to help ensure availability of water for all. The book emphasizes emerging nanotechnology, biotechnology, and information technology?applications as well as sustainable processes and products to protect the environment and human health, save water and energy, and minimize material use. It also discusses such topics as groundwater transport, protection, and remediation, industrial and wastewater treatment, reuse, and disposal, membrane technology for water purification and desalination, treatment and disposal in unconventional oil and gas development, biodegradation, and bioremediation for soil and water. ? Stresses emerging technologies and strategies that facilitate water sustainability. Covers a wide array of topics including drinking water, wastewater, and groundwater treatment, protection, and remediation. Discusses oil and gas drilling impacts and pollution prevention, membrane technology for water desalination and purification, biodegradation, and bioremediation for soil and water. Details emerging nanotechnology, biotechnology, and information technology applications, as well as sustainable processes and products.

Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water

Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water
Author:
Publisher:
Total Pages:
Release: 2012
Genre:
ISBN:


Download Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water Book in PDF, Epub and Kindle

Treated municipal wastewater is a common, widely available alternative source of cooling water for thermoelectric power plants across the U.S. However, the biodegradable organic matter, ammonia-nitrogen, carbonate and phosphates in the treated wastewater pose challenges with respect to enhanced biofouling, corrosion, and scaling, respectively. The overall objective of this study was to evaluate the benefits and life cycle costs of implementing tertiary treatment of secondary treated municipal wastewater prior to use in recirculating cooling systems. The study comprised bench- and pilot-scale experimental studies with three different tertiary treated municipal wastewaters, and life cycle costing and environmental analyses of various tertiary treatment schemes. Sustainability factors and metrics for reuse of treated wastewater in power plant cooling systems were also evaluated. The three tertiary treated wastewaters studied were: secondary treated municipal wastewater subjected to acid addition for pH control (MWW_pH); secondary treated municipal wastewater subjected to nitrification and sand filtration (MWW_NF); and secondary treated municipal wastewater subjected nitrification, sand filtration, and GAC adsorption (MWW_NFG). Tertiary treatment was determined to be essential to achieve appropriate corrosion, scaling, and biofouling control for use of secondary treated municipal wastewater in power plant cooling systems. The ability to control scaling, in particular, was found to be significantly enhanced with tertiary treated wastewater compared to secondary treated wastewater. MWW_pH treated water (adjustment to pH 7.8) was effective in reducing scale formation, but increased corrosion and the amount of biocide required to achieve appropriate biofouling control. Corrosion could be adequately controlled with tolytriazole addition (4-5 ppm TTA), however, which was the case for all of the tertiary treated waters. For MWW_NF treated water, the removal of ammonia by nitrification helped to reduce the corrosivity and biocide demand. Also, the lower pH and alkalinity resulting from nitrification reduced the scaling to an acceptable level, without the addition of anti-scalant chemicals. Additional GAC adsorption treatment, MWW_NFG, yielded no net benefit. Removal of organic matter resulted in pitting corrosion in copper and cupronickel alloys. Negligible improvement was observed in scaling control and biofouling control. For all of the tertiary treatments, biofouling control was achievable, and most effectively with pre-formed monochloramine (2-3 ppm) in comparison with NaOCl and ClO2. Life cycle cost (LCC) analyses were performed for the tertiary treatment systems studied experimentally and for several other treatment options. A public domain conceptual costing tool (LC3 model) was developed for this purpose. MWW_SF (lime softening and sand filtration) and MWW_NF were the most cost-effective treatment options among the tertiary treatment alternatives considered because of the higher effluent quality with moderate infrastructure costs and the relatively low doses of conditioning chemicals required. Life cycle inventory (LCI) analysis along with integration of external costs of emissions with direct costs was performed to evaluate relative emissions to the environment and external costs associated with construction and operation of tertiary treatment alternatives. Integrated LCI and LCC analysis indicated that three-tiered treatment alternatives such as MWW_NSF and MWW_NFG, with regular chemical addition for treatment and conditioning and/or regeneration, tend to increase the impact costs and in turn the overall costs of tertiary treatment. River water supply and MWW_F alternatives with a single step of tertiary treatment were associated with lower impact costs, but the contribution of impact costs to overall annual costs was higher than all other treatment alternatives. MWW_NF and MWW_SF alternatives exhibited moderate external impa ...

Energy Conversion

Energy Conversion
Author: D. Yogi Goswami
Publisher: CRC Press
Total Pages: 1193
Release: 2017-07-06
Genre: Science
ISBN: 1466584831


Download Energy Conversion Book in PDF, Epub and Kindle

This handbook surveys the range of methods and fuel types used in generating energy for industry, transportation, and heating and cooling of buildings. Solar, wind, biomass, nuclear, geothermal, ocean and fossil fuels are discussed and compared, and the thermodynamics of energy conversion is explained. Appendices are provided with fully updated data. Thoroughly revised, this second edition surveys the latest advances in energy conversion from a wide variety of currently available energy sources. It describes energy sources such as fossil fuels, biomass (including refuse-derived biomass fuels), nuclear, solar radiation, wind, geothermal, and ocean, then provides the terminology and units used for each energy resource and their equivalence. It includes an overview of the steam power cycles, gas turbines, internal combustion engines, hydraulic turbines, Stirling engines, advanced fossil fuel power systems, and combined-cycle power plants. It outlines the development, current use, and future of nuclear power.

Water Intake, Wastewater Production and Treatment, and Air Pollution Control in Coal-fired Steam-electric Power Generating Stations

Water Intake, Wastewater Production and Treatment, and Air Pollution Control in Coal-fired Steam-electric Power Generating Stations
Author: CH2M Hill Canada Ltd
Publisher: [Hull, Quebec] : The Service
Total Pages: 164
Release: 1980
Genre: Coal-fired power plants
ISBN:


Download Water Intake, Wastewater Production and Treatment, and Air Pollution Control in Coal-fired Steam-electric Power Generating Stations Book in PDF, Epub and Kindle

Basic air and water emission requirements, and power plant design and operating characteristics are defined. Air pollution control particulate removal devices and a variety of flue gas desulphurization (FGD) alternatives are compared in terms of economic and technical applicability, water requirements, water consumption, and liquid and solid wastes production during power station operation with different types of coal. Three possible station water management systems (once-through, recirculation with limited discharge, and zero discharge) are evaluated under selected conditions, and their impacts on water intake, consumption and wastewater treatment are compared in detail. Coal type is shown to have a strong influence on the quantities of wastes produced and type of air pollution control devices which may be used. In turn, the types of control devices selected are also shown to affect the nature of subsequent wastewater and solid wastes problems. Wastewater recirculation and re-use designs incorporated into station water use related to air pollution controls are found useful in reducing water consumption and wastewater production and treatment requirements.

Effect of Alternate Cooling Systems and Beneficial Use of Waste Heat on Power Plant Performance

Effect of Alternate Cooling Systems and Beneficial Use of Waste Heat on Power Plant Performance
Author:
Publisher:
Total Pages:
Release: 1978
Genre:
ISBN:


Download Effect of Alternate Cooling Systems and Beneficial Use of Waste Heat on Power Plant Performance Book in PDF, Epub and Kindle

The performance and cost of alternate closed-cycle cooling systems for steam--electric power plants are discussed. Included are cooling ponds, spray canals and mechanical- and natural-draft wet cooling towers. Besides equipment, operational and maintenance costs, loss of generating capacity is determined on a seasonal basis in order to determine life-cycle costs relative to once-through cooling. In addition, two beneficial uses of waste heat are similarly analyzed: once-through discharge of condenser coolant into a municipal water supply and interaction of a conventional cooling system with a wastewater treatment plant. Both typical nuclear- and fossil-fueled power plants are considered throughout. Meteorological and system parameters were taken for the Chicago area as an example. Plant heat rates, availability and unit costs were selected from the literature. A new unified analysis of closed-cycle-cooling system performance is developed in order to facilitate computation of loss of generating capacity. The order of cooling systems in terms of increasing cost is: once-through, pond, natural-draft wet tower, spray canal and mechanical-draft wet tower. Alternatively, once-through discharge into a municipal water supply would save 1 to 2% of power-plant fuel and 14 to 22% of residential water-heater energy. Or, the interactive wastewater plant would save 2 to 15% of treatment costs, favoring larger facilities.