Reliability Assessment Using Stochastic Finite Element Analysis

Reliability Assessment Using Stochastic Finite Element Analysis
Author: Achintya Haldar
Publisher: John Wiley & Sons
Total Pages: 356
Release: 2000-05-22
Genre: Technology & Engineering
ISBN: 9780471369615


Download Reliability Assessment Using Stochastic Finite Element Analysis Book in PDF, Epub and Kindle

The first complete guide to using the Stochastic Finite Element Method for reliability assessment Unlike other analytical reliability estimation techniques, the Stochastic Finite Element Method (SFEM) can be used for both implicit and explicit performance functions, making it a particularly powerful and robust tool for today's engineer. This book, written by two pioneers in SFEM-based methodologies, shows how to use SFEM for the reliability analysis of a wide range of structures. It begins by reviewing essential risk concepts, currently available risk evaluation procedures, and the use of analytical and sampling methods in estimating risk. Next, it introduces SFEM evaluation procedures, with detailed coverage of displacement-based and stress-based deterministic finite element approaches. Linear, nonlinear, static, and dynamic problems are considered separately to demonstrate the robustness of the methods. The risk or reliability estimation procedure for each case is presented in different chapters, with theory complemented by a useful series of examples. Integrating advanced concepts in risk-based design, finite elements, and mechanics, Reliability Assessment Using Stochastic Finite Element Analysis is vital reading for engineering professionals and students in all areas of the field.

Reliability Calculations with the Stochastic Finite Element

Reliability Calculations with the Stochastic Finite Element
Author: Wenhui Mo
Publisher: Bentham Science Publishers
Total Pages: 117
Release: 2020-12-01
Genre: Science
ISBN: 9811485518


Download Reliability Calculations with the Stochastic Finite Element Book in PDF, Epub and Kindle

Reliability Calculations with the Stochastic Finite Element presents different methods of reliability analysis for systems. Chapters explain methods used to analyze a number of systems such as single component maintenance system, repairable series system, rigid rotor balance, spring mechanics, gearbox design and optimization, and nonlinear vibration. The author proposes several established and new methods to solve reliability problems which are based on fuzzy systems, sensitivity analysis, Monte Carlo simulation, HL-RF methods, differential equations, and stochastic finite element processing, to name a few. This handbook is a useful update on reliability analysis for mechanical engineers and technical apprentices.

Reliability Evaluation of Dynamic Systems Excited in Time Domain

Reliability Evaluation of Dynamic Systems Excited in Time Domain
Author: Achintya Haldar
Publisher: John Wiley & Sons
Total Pages: 308
Release: 2023-04-18
Genre: Technology & Engineering
ISBN: 1119901642


Download Reliability Evaluation of Dynamic Systems Excited in Time Domain Book in PDF, Epub and Kindle

RELIABILITY EVALUATION OF DYNAMIC SYSTEMS EXCITED IN TIME DOMAIN – REDSET Multi-disciplinary approach to structural reliability analysis for dynamic loadings offering a practical alternative to the random vibration theory and simulation Reliability Evaluation of Dynamic Systems Excited in Time Domain – REDSET is a multidisciplinary concept that enables readers to estimate the underlying risk that could not be solved in the past. The major hurdle was that the required limit state functions (LSFs) are implicit in nature and the lack of progress in the reliability evaluation methods for this class of problems. The most sophisticated deterministic analysis requires that the dynamic loadings must be applied in the time domain. To satisfy these requirements, REDSET is developed. Different types and forms of dynamic loadings including seismic, wind-induced wave, and thermomechanical loading in the form of heating and cooling of solder balls used in computer chips are considered to validate REDSET. Time domain representations and the uncertainty quantification procedures including the use of multiple time histories are proposed and demonstrated for all these dynamic loadings. Both onshore and offshore structures are used for validation. The potential of REDSET is demonstrated for implementing the Performance Based Seismic Design (PBSD) concept now under development in the United States. For wider multidisciplinary applications, structures are represented by finite elements to capture different types of nonlinearity more appropriately. Any computer program capable of conducting nonlinear time domain dynamic analysis can be used, and the underlying risk can be estimated with the help of several dozens or hundreds of deterministic finite element analyses, providing an alternative to the simulation approach. To aid comprehension of REDSET, numerous illustrative examples and solution strategies are presented in each chapter. Written by award-winning thought leaders from academia and professional practice, the following sample topics are included: Fundamentals of reliability assessment including set theory, modeling of uncertainty, the risk-based engineering design concept, and the evolution of reliability assessment methods Implicit performance or limit state functions are expressed explicitly by the extensively modified response surface method with several new experimental designs Uncertainty quantification procedures with multiple time histories for different dynamic loadings, illustrated with examples The underlying risk can be estimated using any computer program representing structures by finite elements with only few deterministic analyses REDSET is demonstrated to be an alternative to the classical random vibration concept and the basic simulation procedure for risk estimation purposes REDSET changes the current engineering design paradigm. Instead of conducting one deterministic analysis, a design can be made more dynamic load tolerant, resilient, and sustainable with the help of a few additional deterministic analyses This book describing REDSET is expected to complement two other books published by Wiley and authored by Haldar and Mahadevan: Probability, Reliability and Statistical Methods in Engineering Design and Reliability Assessment Using Stochastic Finite Element Analysis. The book is perfect to use as a supplementary resource for upper-level undergraduate and graduate level courses on reliability and risk-based design.

Reliability-based Structural Design

Reliability-based Structural Design
Author: Seung-Kyum Choi
Publisher: Springer Science & Business Media
Total Pages: 309
Release: 2006-11-15
Genre: Technology & Engineering
ISBN: 1846284457


Download Reliability-based Structural Design Book in PDF, Epub and Kindle

This book provides readers with an understanding of the fundamentals and applications of structural reliability, stochastic finite element method, reliability analysis via stochastic expansion, and optimization under uncertainty. It examines the use of stochastic expansions, including polynomial chaos expansion and Karhunen-Loeve expansion for the reliability analysis of practical engineering problems.

Stochastic Finite Element Methods for Structural Reliability Analysis

Stochastic Finite Element Methods for Structural Reliability Analysis
Author:
Publisher:
Total Pages: 145
Release: 1993
Genre:
ISBN:


Download Stochastic Finite Element Methods for Structural Reliability Analysis Book in PDF, Epub and Kindle

This report presents a study of stochastic finite element methods (SFEM) for structural reliability analysis, beginning with a literature review of various SFEM methodologies and subjects relating to probabilistic finite element analysis. The report describes case studies of two existing SFEM-based reliability analysis programs (NESSUS and CALREL-FEAP), with discussion of their methodology, main features, structure, and capabilities. The report then presents the design and implementation of a software package for random field discretization (RANFLD) and a SFEM-based reliability analysis (STOVAST), the latter designed for operation with the commercial VAST finite element analysis system. The package was verified using several beam and plate problems. Finally, the report discusses bias and modelling errors in SFEM-based reliability analysis. Appendices include input formats and output files for RANFLD and STOVAST.

Uncertain Analysis in Finite Elements Models

Uncertain Analysis in Finite Elements Models
Author: Wenhui Mo
Publisher: Bentham Science Publishers
Total Pages: 178
Release: 2022-08-31
Genre: Science
ISBN: 9815079077


Download Uncertain Analysis in Finite Elements Models Book in PDF, Epub and Kindle

This book explains uncertainty analysis for finite elements and general nonlinear problems. It starts with the fundamentals of the topic and progresses to complex methods through 9 chapters. Each chapter focuses on a specific, relevant topic and provides information in a structured reading format for advanced learners. The author explains different models relevant to the topic where applicable, in an effort to cover the diverse aspects of mathematical analysis. Topics covered in the book include: - Nonlinear stochastic finite element methods - Reliability calculations - Static analysis of interval finite element - Linear and nonlinear vibration analysis - Stochastic, random, fuzzy and mixed fields - Mixed finite element analysis Uncertainty Analysis in Finite Elements Models is an ideal reference for advanced courses in mathematical analysis and engineering that require students to understand the basics of uncertainty analysis and basic reliability calculations.

Quay Walls, Second Edition

Quay Walls, Second Edition
Author: J.G. de Gijt
Publisher: CRC Press
Total Pages: 658
Release: 2013-12-02
Genre: Technology & Engineering
ISBN: 113800023X


Download Quay Walls, Second Edition Book in PDF, Epub and Kindle

This new edition of the handbook of Quay Walls provides the reader with essential knowledge for the planning, design, execution and maintenance of quay walls, as well as general information about historical developments and lessons learned from the observation of ports in various countries. Technical chapters are followed by a detailed calculation of a quay wall based on a semi-probabilistic design procedure, which applies the theory presented earlier. Since the publication of the Dutch edition in 2003 and the English version in 2005, considerable new experience has been obtained by the many practitioners using the book, prompting the update of this handbook. Moreover, the introduction of the Eurocodes in 2012 has prompted a complete revision of the Design chapter, which is now compliant with the Eurocodes. Furthermore, additional recommendations for using FEM-analysis in quay wall design have been included. In response to ongoing discussions within the industry about buckling criteria for steel pipe piles, a thorough research project was carried out on steel pipe piles fi lled with sand and on piles without sand. The results of this research programme have also been incorporated in this new version. Finally, the section on corrosion has been updated to refl ect the latest knowledge and attention has been given to the latest global developments in quay wall engineering. The new edition was made possible thanks to the contributions of numerous experts from the Netherlands and Belgium.