Quantum Mechanics Built on Algebraic Geometry

Quantum Mechanics Built on Algebraic Geometry
Author: Akihito Kikuchi
Publisher:
Total Pages: 286
Release: 2021-01-04
Genre:
ISBN: 9781636480718


Download Quantum Mechanics Built on Algebraic Geometry Book in PDF, Epub and Kindle

This book presents a novel standpoint concerning contemporary physics, namely, quantum mechanics with a view toward algebraic geometry. As is well-known, algebraic geometry is the study of geometric objects delineated by polynomials, and the polynomial representations are ubiquitous in physics. For this reason, quantum mechanics is also an object of algebraic geometry. An example is the eigenvalue problem. It is a set of polynomial equations and has traditionally been the question of linear algebra. However, the modern method of computational algebraic geometry accurately unravels the information encapsulated in the polynomials. This approach shall not remain as a plaything. It has betokened an innovative style of electronic structure computation. The objects of this new method include the simultaneous determination of the wave-functions and the movements of nuclei, or the prediction of the required structure that shall show the desired property. Accordingly, this book explains the basic ideas of computational algebraic geometry and related topics, such as Groebner bases, primary ideal decomposition, Dmodules, Galois, class field theory, etc. The intention of the author is, nevertheless, not to give an irksome list of abstract concepts. He hopes that the readers shall use algebraic geometry as the active tool of the computations. For this reason, this book abundantly presents the model computations, by which the readers shall learn how to apply algebraic geometry toward quantum mechanics. The readers shall also see the modern computer algebra could facilitate the study when you would like to apply abstract mathematical ideas to definite physical problems.

Geometric And Algebraic Topological Methods In Quantum Mechanics

Geometric And Algebraic Topological Methods In Quantum Mechanics
Author: Luigi Mangiarotti
Publisher: World Scientific
Total Pages: 715
Release: 2005-01-27
Genre: Science
ISBN: 9814481149


Download Geometric And Algebraic Topological Methods In Quantum Mechanics Book in PDF, Epub and Kindle

In the last decade, the development of new ideas in quantum theory, including geometric and deformation quantization, the non-Abelian Berry's geometric factor, super- and BRST symmetries, non-commutativity, has called into play the geometric techniques based on the deep interplay between algebra, differential geometry and topology. The book aims at being a guide to advanced differential geometric and topological methods in quantum mechanics. Their main peculiarity lies in the fact that geometry in quantum theory speaks mainly the algebraic language of rings, modules, sheaves and categories. Geometry is by no means the primary scope of the book, but it underlies many ideas in modern quantum physics and provides the most advanced schemes of quantization.

Quantum Physics and Geometry

Quantum Physics and Geometry
Author: Edoardo Ballico
Publisher: Springer
Total Pages: 173
Release: 2019-03-13
Genre: Science
ISBN: 3030061221


Download Quantum Physics and Geometry Book in PDF, Epub and Kindle

This book collects independent contributions on current developments in quantum information theory, a very interdisciplinary field at the intersection of physics, computer science and mathematics. Making intense use of the most advanced concepts from each discipline, the authors give in each contribution pedagogical introductions to the main concepts underlying their present research and present a personal perspective on some of the most exciting open problems. Keeping this diverse audience in mind, special efforts have been made to ensure that the basic concepts underlying quantum information are covered in an understandable way for mathematical readers, who can find there new open challenges for their research. At the same time, the volume can also be of use to physicists wishing to learn advanced mathematical tools, especially of differential and algebraic geometric nature.

Mathematical Models In Science

Mathematical Models In Science
Author: Olav Arnfinn Laudal
Publisher: World Scientific
Total Pages: 319
Release: 2021-06-16
Genre: Science
ISBN: 1800610297


Download Mathematical Models In Science Book in PDF, Epub and Kindle

Mathematical Models in Science treats General Relativity and Quantum Mechanics in a non-commutative Algebraic Geometric framework.Based on ideas first published in Geometry of Time-Spaces: Non-commutative Algebraic Geometry Applied to Quantum Theory (World Scientific, 2011), Olav Arnfinn Laudal proposes a Toy Model as a Theory of Everything, starting with the notion of the Big Bang in Cosmology, modeled as the non-commutative deformation of a thick point. From this point, the author shows how to extract reasonable models for both General Relativity and Quantum Theory. This book concludes that the universe turns out to be the 6-dimensional Hilbert scheme of pairs of points in affine 3-space. With this in place, one may develop within the model much of the physics known to the reader. In particular, this theory is applicable to the concept of Dark Matter and its effects on our visual universe.Hence, Mathematical Models in Science proves the dependency of deformation theory in Mathematical Physics and summarizes the development of physical applications of pure mathematics developed in the twentieth century.

Geometry of Quantum Theory

Geometry of Quantum Theory
Author: V.S. Varadarajan
Publisher: Springer Science & Business Media
Total Pages: 426
Release: 2007-12-03
Genre: Science
ISBN: 0387493867


Download Geometry of Quantum Theory Book in PDF, Epub and Kindle

Available for the first time in soft cover, this book is a classic on the foundations of quantum theory. It examines the subject from a point of view that goes back to Heisenberg and Dirac and whose definitive mathematical formulation is due to von Neumann. This view leads most naturally to the fundamental questions that are at the basis of all attempts to understand the world of atomic and subatomic particles.

Quantum Theories and Geometry

Quantum Theories and Geometry
Author: M. Cahen
Publisher: Springer Science & Business Media
Total Pages: 196
Release: 2012-12-06
Genre: Science
ISBN: 9400930550


Download Quantum Theories and Geometry Book in PDF, Epub and Kindle

This book presents the text of most of the lectures which were de livered at the Meeting Quantum Theories and Geometry which was held at the Fondation Les Treilles from March 23 to March 27, 1987. The general aim of this meeting was to bring together mathemati cians and physicists who have worked in this growing field of contact between the two disciplines, namely this region where geometry and physics interact creatively in both directions. It 1S the strong belief of the organizers that these written con tributions will be a useful document for research people workin~ 1n geometry or physics. Three lectures were devoted to the deformation approach to quantum mechanics which involves a modification of both the associative and the Lie structure of the algebra of functions on classical phase space. A. Lichnerowicz shows how one can view classical and quantum statistical mechanics in terms of a deformation with a parameter inversely propor tional to temperature. S. Gutt reviews the physical background of star products and indicates their applications in Lie groups representa tion theory and in harmonic analysis. D. Arnal gives a rigorous theory Vll viii PREFACI of the star exponential in the case of the Heisenberg group and shows how this can be extended to arbitrary nilpotent groups.

The Universal Coefficient Theorem and Quantum Field Theory

The Universal Coefficient Theorem and Quantum Field Theory
Author: Andrei-Tudor Patrascu
Publisher: Springer
Total Pages: 279
Release: 2016-09-23
Genre: Science
ISBN: 3319461435


Download The Universal Coefficient Theorem and Quantum Field Theory Book in PDF, Epub and Kindle

This thesis describes a new connection between algebraic geometry, topology, number theory and quantum field theory. It offers a pedagogical introduction to algebraic topology, allowing readers to rapidly develop basic skills, and it also presents original ideas to inspire new research in the quest for dualities. Its ambitious goal is to construct a method based on the universal coefficient theorem for identifying new dualities connecting different domains of quantum field theory. This thesis opens a new area of research in the domain of non-perturbative physics—one in which the use of different coefficient structures in (co)homology may lead to previously unknown connections between different regimes of quantum field theories. The origin of dualities is an issue in fundamental physics that continues to puzzle the research community with unexpected results like the AdS/CFT duality or the ER-EPR conjecture. This thesis analyzes these observations from a novel and original point of view, mainly based on a fundamental connection between number theory and topology. Beyond its scientific qualities, it also offers a pedagogical introduction to advanced mathematics and its connection with physics. This makes it a valuable resource for students in mathematical physics and researchers wanting to gain insights into (co)homology theories with coefficients or the way in which Grothendieck's work may be connected with physics.

Quantization, Geometry and Noncommutative Structures in Mathematics and Physics

Quantization, Geometry and Noncommutative Structures in Mathematics and Physics
Author: Alexander Cardona
Publisher: Springer
Total Pages: 347
Release: 2017-10-26
Genre: Science
ISBN: 3319654276


Download Quantization, Geometry and Noncommutative Structures in Mathematics and Physics Book in PDF, Epub and Kindle

This monograph presents various ongoing approaches to the vast topic of quantization, which is the process of forming a quantum mechanical system starting from a classical one, and discusses their numerous fruitful interactions with mathematics.The opening chapter introduces the various forms of quantization and their interactions with each other and with mathematics.A first approach to quantization, called deformation quantization, consists of viewing the Planck constant as a small parameter. This approach provides a deformation of the structure of the algebra of classical observables rather than a radical change in the nature of the observables. When symmetries come into play, deformation quantization needs to be merged with group actions, which is presented in chapter 2, by Simone Gutt.The noncommutativity arising from quantization is the main concern of noncommutative geometry. Allowing for the presence of symmetries requires working with principal fiber bundles in a non-commutative setup, where Hopf algebras appear naturally. This is the topic of chapter 3, by Christian Kassel. Nichols algebras, a special type of Hopf algebras, are the subject of chapter 4, by Nicolás Andruskiewitsch. The purely algebraic approaches given in the previous chapters do not take the geometry of space-time into account. For this purpose a special treatment using a more geometric point of view is required. An approach to field quantization on curved space-time, with applications to cosmology, is presented in chapter 5 in an account of the lectures of Abhay Ashtekar that brings a complementary point of view to non-commutativity.An alternative quantization procedure is known under the name of string theory. In chapter 6 its supersymmetric version is presented. Superstrings have drawn the attention of many mathematicians, due to its various fruitful interactions with algebraic geometry, some of which are described here. The remaining chapters discuss further topics, as the Batalin-Vilkovisky formalism and direct products of spectral triples.This volume addresses both physicists and mathematicians and serves as an introduction to ongoing research in very active areas of mathematics and physics at the border line between geometry, topology, algebra and quantum field theory.

The Logico-Algebraic Approach to Quantum Mechanics

The Logico-Algebraic Approach to Quantum Mechanics
Author: C.A. Hooker
Publisher: Springer Science & Business Media
Total Pages: 611
Release: 2012-12-06
Genre: Science
ISBN: 9401017956


Download The Logico-Algebraic Approach to Quantum Mechanics Book in PDF, Epub and Kindle

The twentieth century has witnessed a striking transformation in the un derstanding of the theories of mathematical physics. There has emerged clearly the idea that physical theories are significantly characterized by their abstract mathematical structure. This is in opposition to the tradi tional opinion that one should look to the specific applications of a theory in order to understand it. One might with reason now espouse the view that to understand the deeper character of a theory one must know its abstract structure and understand the significance of that struc ture, while to understand how a theory might be modified in light of its experimental inadequacies one must be intimately acquainted with how it is applied. Quantum theory itself has gone through a development this century which illustrates strikingly the shifting perspective. From a collection of intuitive physical maneuvers under Bohr, through a formative stage in which the mathematical framework was bifurcated (between Schrödinger and Heisenberg) to an elegant culmination in von Neumann's Hilbert space formulation the elementary theory moved, flanked even at the later stage by the ill-understood formalisms for the relativistic version and for the field-theoretic altemative; after that we have a gradual, but constant, elaboration of all these quantal theories as abstract mathematical struc tures (their point of departure being von Neumann's formalism) until at the present time theoretical work is heavily preoccupied with the manip ulation of purely abstract structures.