Quantitative Trait Loci Affecting the Agronomic Performance of a Sorghum Bicolor (L.) Moench Recombinant Inbred Restorer Line Population

Quantitative Trait Loci Affecting the Agronomic Performance of a Sorghum Bicolor (L.) Moench Recombinant Inbred Restorer Line Population
Author: Jorge Luis Moran Maradiaga
Publisher:
Total Pages:
Release: 2003
Genre:
ISBN:


Download Quantitative Trait Loci Affecting the Agronomic Performance of a Sorghum Bicolor (L.) Moench Recombinant Inbred Restorer Line Population Book in PDF, Epub and Kindle

Lately the rate of genetic gain in most agronomic crop species has been reduced due to several factors that limit breeding efficiency and genetic gain. New genetic tools and more powerful statistical analyses provide an alternative approach to enhance genetic improvements through the identification of molecular markers linked to genomic regions or QTLs controlling quantitative traits. The main objective of this research was to identify genomic regions associated with enhanced agronomic performance in lines per se and hybrid combination in Sorghum bicolor (L.) Moench. A population composed of 187 F5:6 recombinant inbred lines (RIL) was derived from the cross of restorer lines RTx430 and RTx7000. Also, a testcross hybrid population (TCH) was developed by using each RIL as a pollinator onto ATx2752. A linkage map was constructed using 174 marker loci generated from AFLP and SSR primer combinations. These markers were assigned to 12 different linkage groups. The linkage map covers 1573 cM with marker loci spaced at an averaged 9.04 cM. In this study, 89 QTL that control variation in seven different morphological traits were identified in the recombinant inbred line population, while in the testcross hybrid population, 79 QTL were identified. These traits included grain yield, plant height, days to mid-anthesis, panicle number, panicle length, panicle exsertion and panicle weight. These putative QTL explained from 4 to 42% of the phenotypic variation observed for each trait. Many of the QTL were not consistent across populations and across environments. Nevertheless, a few key QTL were identified and the source of the positive additive genetics isolated. RTx7000 was consistently associated with better agronomic performance in RIL, while in testcrosses, RTx430 was. Some genomic regions from RTx7000 may be utilized to improve RTx430 as a line per se. However, it is very unlikely that such regions will have a positive effect on the combining ability of RTx430 since testcross results did not reveal any transgressive segregants from the RIL population.

Advances in Agronomy

Advances in Agronomy
Author:
Publisher: Academic Press
Total Pages: 303
Release: 2004-07-17
Genre: Technology & Engineering
ISBN: 0080524354


Download Advances in Agronomy Book in PDF, Epub and Kindle

Advances in Agronomy continues to be recognized as a leading reference and a first-rate source of the latest research in agronomy. Major reviews deal with the current topics of interest to agronomists, as well as crop and soil scientists. As always, the subjects covered are varied and exemplary of the myriad subject matter dealt with by this long-running serial. Editor Donald Sparks, former president of the Soil Science Society of America and current president of the International Union of Soil Science, is the S. Hallock du Pont Chair of Plant and Soil Sciences at The University of Delaware. Volume 83 contains five excellent reviews that discuss topics critical to agricultural and environmental sustainability. Maintains the highest impact factor among serial publications in Agriculture Presents timely reviews on important agronomy issues Enjoys a long-standing reputation for excellence in the field

Bioenergy Feedstocks

Bioenergy Feedstocks
Author: Malay C. Saha
Publisher: John Wiley & Sons
Total Pages: 308
Release: 2013-04-03
Genre: Technology & Engineering
ISBN: 111860945X


Download Bioenergy Feedstocks Book in PDF, Epub and Kindle

Bioenergy and biofuels are generated from a wide variety of feedstock. Fuels have been converted from a wide range of sources from vegetable oils to grains and sugarcane. Second generation biofuels are being developed around dedicated, non-food energy crops, such as switchgrass and Miscanthus, with an eye toward bioenergy sustainability. Bioenergy Feedstocks: Breeding and Genetics looks at advances in our understanding of the genetics and breeding practices across this diverse range of crops and provides readers with a valuable tool to improve cultivars and increase energy crop yields. Bioenergy Feedstocks: Breeding and Genetics opens with chapters focusing primarily on advances in the genetics and molecular biology of dedicated energy crops. These chapters provide in-depth coverage of new, high-potential feedstocks. The remaining chapters provide valuable overview of breeding efforts of current feedstocks with specific attention paid to the development of bioenergy traits. Coverage in these chapters includes crops such as sorghum, energy canes, corn, and other grasses and forages. The final chapters explore the role of transgenics in bioenergy feedstock production and the development of low-input strategies for producing bioenergy crops. A timely collection of work from a global team of bioenergy researchers and crop scientists, Bioenergy Feedstocks: Breeding and Genetics is an essential reference on cultivar improvement of biomass feedstock crops.

Heritability and Quantitative Trait Loci for Popping Characteristics in Sorghum Grain

Heritability and Quantitative Trait Loci for Popping Characteristics in Sorghum Grain
Author: Nicholas Ace Pugh
Publisher:
Total Pages:
Release: 2015
Genre:
ISBN:


Download Heritability and Quantitative Trait Loci for Popping Characteristics in Sorghum Grain Book in PDF, Epub and Kindle

Popped sorghum (Sorghum bicolor, L. Moench) is becoming increasingly popular with niche consumers. However, sorghum has not undergone the years of intensive selective breeding that popcorn has. This study measured popping characteristics and grain traits to estimate heritability, the relative effect of environment and genotype x environment interactions on these traits and to identify quantitative trait loci (QTL) for popping quality. Using a heated-air popping methodology, a recombinant inbred line population was phenotyped for popping characteristics in grain from three environments in Texas. Entry-mean heritability of popping efficiency (PE) ranged from 0.595 - 0.755 and the heritability of expansion ratio (ER) ranged from 0.617 - 0.769 across environments. ANOVA indicate that both environment and genotype x environment interactions were significant sources of variation. Using genome sequence mapping technology, five QTL were identified for popping efficiency and four were identified for expansion ratio. Additionally QTL for endosperm color, kernel diameter, kernel weight, and kernel hardness were found, and several of those were consistent across multiple production environments. These results indicate that popping quality a complex quantitative trait in sorghum, but improvement of popping efficiency, expansion ratio, and other kernel characteristics via marker-assisted selection is possible. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/155661

Quantitative Trait Locus (QTL) Mapping of Transpiration Efficiency Related to Pre-flower Drought Tolerance in Sorghum [Sorghum Bicolor (L.) Moench]

Quantitative Trait Locus (QTL) Mapping of Transpiration Efficiency Related to Pre-flower Drought Tolerance in Sorghum [Sorghum Bicolor (L.) Moench]
Author: Mohankumar Heraganahally Kapanigowda
Publisher:
Total Pages:
Release: 2012
Genre:
ISBN:


Download Quantitative Trait Locus (QTL) Mapping of Transpiration Efficiency Related to Pre-flower Drought Tolerance in Sorghum [Sorghum Bicolor (L.) Moench] Book in PDF, Epub and Kindle

There is an increasing need to improve crop water-use efficiency (WUE) (ratio of whole-plant biomass to cumulative transpiration) due to decreased water availability and increased food and energy demands throughout the world. The objective of the study was to estimate the genetic variation and genetic basis for transpiration efficiency A:E (CO2 assimilation rate (A) divided by transpiration rate (E)) trait and its relationship to WUE related to pre-flower drought tolerance in recombinant inbred lines (RILs) of sorghum and associated QTLs. A greenhouse study was conducted at Bushland, TX, 2008, using 71 RILs derived from cross of Tx430 x Tx7078. A randomized complete block experimental design was used, with both genotype and water regime (40 and 80 percent water regime) as experimental factors, and four replications. Genotype had a significant effect on A, E and A:E under both the environments. Among the RILs, entry means for A:E ranged from 1.58 to 3.07 mmol CO2 mol^-1 H2O and 1.18 to 4.36 mmol CO2 mol^-1 H2O under 80 percent and 40 percent water regime, respectively. Heritability estimates based on individual environments for A:E, A and E were 0.77, 0.45 and 0.37 under 80 percent water regime and 0.90, 0.33 and 0.71 under 40 percent water regime, respectively. A genetic map was constructed by digital genotyping method using Illumina GAII sequencer with 261 informative indel/ single-nucleotide polymorphism (SNP's) markers distributed over 10 linkage groups. Three significant QTLs associated with transpiration efficiency were identified; two on SBI-09 and one on SBI-10 with one logarithmic of odds (LOD) interval length ranging from 5.3 to 5.7 cM and accounting for 17 percent - 21 percent of the phenotypic variation. In field and greenhouse evaluation of agronomic of traits at College Station and Halfway, TX, 91 QTL that control variation in six major agronomic traits such as plant height, flowering, biomass, leaf area, leaf greenness and stomatal density were identified. Co-localization of transpiration efficiency QTLs with agronomic traits such as leaf area, biomass, leaf width and stomatal density indicated that these agronomically important QTLs can be used for further improving the sorghum performance through marker assisted selection (MAS) under pre-flowering drought stress conditions.

Agronomic, Genetic and Genomic Approaches for Predicting Heterosis in Sorghum [Sorghum Bicolor (L.) Moench]

Agronomic, Genetic and Genomic Approaches for Predicting Heterosis in Sorghum [Sorghum Bicolor (L.) Moench]
Author: Frank Maulana
Publisher:
Total Pages:
Release: 2016
Genre:
ISBN:


Download Agronomic, Genetic and Genomic Approaches for Predicting Heterosis in Sorghum [Sorghum Bicolor (L.) Moench] Book in PDF, Epub and Kindle

The approach used to identify inbred lines that can produce superior hybrids is costly and time-consuming. It requires creation of all possible crosses and evaluation of the crosses to estimate combining abilities for the desired traits. Predicting heterosis or hybrid performance in any way possible may help to reduce the number of crosses to be made and evaluated. In this study, four sets of experiments were conducted to determine whether heterosis can be predicted based on inbred line performance, genetic distance between parents and genomic prediction model. The first experiment was aimed at assessing the levels of genetic diversity, population structure and linkage disequilibrium (LD) in 279 public sorghum inbred lines, based on 66,265 SNPs generated using the genotyping-by-sequencing (GBS) platform. The inbred lines were developed at different times over the last two decades and harbor robust diversity in pedigree and agronomic characteristics. Some of the inbreds are resistant to Acetolactate synthase (ALS) and Acetyl co-enzyme-A carboxylase (ACC) inhibitor herbicides. The mean polymorphic information content (PIC) and gene diversity across the entire inbreds were 0.35 and 0.46, respectively with non-herbicide resistant inbreds harboring more diversity than the herbicide resistant ones. The population structure analysis clustered the inbred lines into three major subgroups according to pedigree and fertility-reaction with the maintainer lines (B-lines) distinctly forming a separate cluster. Analysis of molecular variance (AMOVA) revealed more variation within subgroups than among subgroups. Substantial linkage disequilibrium (LD) was detected between the markers in the population with marked variation between chromosomes. This information may facilitate the use of the inbreds in sorghum breeding programs and provide perspectives for optimizing marker density for gene mapping and marker-assisted breeding. The second experiment, based on 102 F1 hybrids developed by intercrossing closely and distantly related inbreds, was conducted to investigate the relationship of genetic distance between parents with hybrid vigor or heterosis. The F1 hybrids alongside their parents were evaluated at two environments in a randomized complete block design with three replications. The results show that correlations of genetic distance between parents with hybrid performance and heterosis were variable and dependent on the trait. Though most were statistically non-significant and not strong to be used as predictor for heterosis, the results tend to show that certain level of genetic distance between parents is needed to capture maximum heterosis and hybrid performance. The objective of the third research study was to determine whether traits measured on parents can be used to predict hybrid performance in sorghum and to assess the combining ability of selected inbreds. Forty-six parental inbred lines and 75 F1 hybrids generated from intercrossing the inbreds were evaluated in four environments in a randomized complete block design with three replications. The average performance of the parents (mid-parent) was significantly correlated with hybrid performance for thousand kernel weight, days to flowering and plant height. Significant general (GCA) and specific (SCA) combining abilities were observed for most traits, with highly significant GCA effects observed for most traits as compared to SCA indicating that additive genetic effects are more important in affecting the inheritance of the traits measured. Results show that studying parental inbred line performance could generate important information for predicting hybrid performance in sorghum. The fourth experiment was aimed at assessing the efficacy of genomic prediction of hybrid performance in sorghum. Genomic prediction was performed with five-fold cross-validation procedure on 204 F1 hybrids developed using 102 inbred lines. A total of 66,265 SNP markers generated using genotyping-by-sequencing were used in this study. Results showed that increasing training population size increased prediction accuracies for all traits with the effect being different for different traits. Also, considering additive effects alone versus additive and dominance effects in the model showed similar trend of prediction accuracy but the full model (considering both additive and dominance effects of the markers) provided better prediction at least for some of the traits. The results suggest that genomic prediction could become an effective tool for predicting the performance of untested sorghum hybrids thus adding efficiency to hybrid selection.

Genomic Mapping for Grain Yield, Stay Green, and Grain Quality Traits in Sorghum

Genomic Mapping for Grain Yield, Stay Green, and Grain Quality Traits in Sorghum
Author: Sivakumar Sukumaran
Publisher:
Total Pages:
Release: 2012
Genre:
ISBN:


Download Genomic Mapping for Grain Yield, Stay Green, and Grain Quality Traits in Sorghum Book in PDF, Epub and Kindle

Knowledge of the genetic bases of grain quality traits will complement plant breeding efforts to improve the end use value of sorghum (Sorghum bicolor (L.) Moench). The objective of the first experiment was to assess marker-trait associations for 10 grain quality traits through candidate gene association mapping on a diverse panel of 300 sorghum accessions. The 10 grain quality traits were measured using the single kernel characterization system (SKCS) and near-infrared reflectance spectroscopy (NIRS). The analysis of the accessions through 1,290 genome-wide single nucleotide polymorphisms (SNPs) separated the panel into five subpopulations that corresponded to three major sorghum races (durra, kafir, and caudatum), one intermediate race (guinea-caudatum), and one working group (zerazera/caudatum). Association analysis between 333 SNPs in candidate genes/loci and grain quality traits resulted in eight significant marker-trait associations. A SNP in starch synthase IIa (SSIIa) gene was associated with kernel hardness (KH) with a likelihood ratio-based R2 (R[subscript]L[subscript]R2) value of 0.08. SNPs in starch synthase (SSIIb) gene (R[subscript]L[subscript]R2 = 0.10) and loci pSB1120 (R[subscript]L[subscript]R2 = 0.09) was associated with starch content. Sorghum is a crop well adapted to the semi arid regions of the world and my harbor genes for drought tolerance. The objective of second experiment was to identify quantitative trait loci (QTLs) for yield potential and drought tolerance. From a cross between Tx436 (food grain type) and 00MN7645 (drought tolerant) 248 recombinant inbred lines (RILs) was developed. Multi-location trials were conducted in 8 environments to evaluate agronomic performance of the RILs under favorable and drought stress conditions. The 248 RILs and their parents were genotyped by genotyping-by-sequencing (GBS). A subset of 800 SNPs was used for linkage map construction and QTL detection. Composite interval mapping identified a major QTLs for grain yield in chromosome 8 and QTL for flowering time in chromosome 9 under favorable conditions. Three major QTLs were detected for grain yield in chromosomes 1, 6, and 8 and two flowering time QTLs on chromosome 1 under drought conditions. Six QTLs were identified for stay green: two on chromosome 4; one each on chromosome 5, 6, 7, and 10 under drought conditions.

QTLs for Energy Related Traits in a Sweet X Grain RIL Sorghum [sorghum Bicolor (l.) Moench] Population

QTLs for Energy Related Traits in a Sweet X Grain RIL Sorghum [sorghum Bicolor (l.) Moench] Population
Author: Terry Felderhoff
Publisher:
Total Pages:
Release: 2012
Genre:
ISBN:


Download QTLs for Energy Related Traits in a Sweet X Grain RIL Sorghum [sorghum Bicolor (l.) Moench] Population Book in PDF, Epub and Kindle

Recent initiatives for biofuel production have increased research and development of sweet sorghum. Currently, the initial major limitation to integrating sweet sorghum into existing production systems is the lack of sweet sorghum hybrids adapted to industrial production systems. Hybrid development is now underway, and the application of genetic markers can be used to define the genetic basis of sugar yield and its components, as well as reduce the time required to deliver new sweet sorghum hybrids to market. The purpose of this research was to further characterize the genetic components that influence sweet sorghum productivity, agronomics, and composition. Specifically, a grain x sweet sorghum recombinant inbred line (RIL) population developed for quantitative trait locus (QTL) analysis related to sugar production was evaluated for 24 phenotypic traits including brix, percent moisture, and biomass yield across four environments. The 185 F4 RILs were derived from the parents 'BTx3197' and 'Rio', which are pithy stalk grain and juicy stalk sweet sorghums respectively. Following screening, two genetic maps were constructed with 372 and 381 single nucleotide polymorphisms (SNPs) evaluated using an Illumina GoldenGate assay. Analysis of the data in QTL Cartographer revealed a major and previously reported QTL for soluble solids on chromosome 3, but in contrast to previous studies, this QTL co-localized with other QTLs that have a negative influence on biomass and seed production. Therefore, selection for this QTL may not be advantageous. Because only a few QTLs for percent moisture were found, the results indicated that the pithy stalk phenotype does not have a major effect on percent moisture as measured in this study. Thus, breeding for high or low moisture content will be more challenging than previously expected. The absence of dominance effects indicated that brix must be high in both parents to produce high brix in the hybrid.