Practice of Earthquake Hazard Assessment

Practice of Earthquake Hazard Assessment
Author: DIANE Publishing Company
Publisher: DIANE Publishing
Total Pages: 298
Release: 1993
Genre: Science
ISBN: 9780788115929


Download Practice of Earthquake Hazard Assessment Book in PDF, Epub and Kindle

Summarizes probabilistic seismic hazard assessment as it is practiced in various countries throughout the world. 59 reports are included covering 88 countries, which comprise about 80% of the inhabited land mass of the Earth. Over 100 maps.

The Practice of Earthquake Hazard Assessment

The Practice of Earthquake Hazard Assessment
Author: International Association of Seismology and Physics of the Earth's Interior
Publisher:
Total Pages: 300
Release: 1993
Genre: Earthquake hazard analysis
ISBN:


Download The Practice of Earthquake Hazard Assessment Book in PDF, Epub and Kindle

Earthquake Hazard Assessment

Earthquake Hazard Assessment
Author: Sreevalsa Kolathayar
Publisher: CRC Press
Total Pages: 238
Release: 2018-05-30
Genre: Technology & Engineering
ISBN: 1351387553


Download Earthquake Hazard Assessment Book in PDF, Epub and Kindle

This book represents a significant contribution to the area of earthquake data processing and to the development of region-specific magnitude correlations to create an up-to-date homogeneous earthquake catalogue that is uniform in magnitude scale. The book discusses seismicity analysis and estimation of seismicity parameters of a region at both finer and broader levels using different methodologies. The delineation and characterization of regional seismic source zones which requires reasonable observation and engineering judgement is another subject covered. Considering the complex seismotectonic composition of a region, use of numerous methodologies (DSHA and PSHA) in analyzing the seismic hazard using appropriate instruments such as the logic tree will be elaborated to explicitly account for epistemic uncertainties considering alternative models (for Source model, Mmax estimation and Ground motion prediction equations) to estimate the PGA value at bedrock level. Further, VS30 characterization based on the topographic gradient, to facilitate the development of surface level PGA maps using appropriate amplification factors, is discussed. Evaluation of probabilistic liquefaction potential is also explained in the book. Necessary backgrounds and contexts of the aforementioned topics are elaborated through a case study specific to India which features spatiotemporally varied and complex tectonics. The methodology and outcomes presented in this book will be beneficial to practising engineers and researchers working in the fields of seismology and geotechnical engineering in particular and to society in general.

Seismic Hazard and Risk Analysis

Seismic Hazard and Risk Analysis
Author: Jack Baker
Publisher: Cambridge University Press
Total Pages: 600
Release: 2021-10-21
Genre: Technology & Engineering
ISBN: 9781108425056


Download Seismic Hazard and Risk Analysis Book in PDF, Epub and Kindle

Seismic hazard and risk analyses underpin the loadings prescribed by engineering design codes, the decisions by asset owners to retrofit structures, the pricing of insurance policies, and many other activities. This is a comprehensive overview of the principles and procedures behind seismic hazard and risk analysis. It enables readers to understand best practises and future research directions. Early chapters cover the essential elements and concepts of seismic hazard and risk analysis, while later chapters shift focus to more advanced topics. Each chapter includes worked examples and problem sets for which full solutions are provided online. Appendices provide relevant background in probability and statistics. Computer codes are also available online to help replicate specific calculations and demonstrate the implementation of various methods. This is a valuable reference for upper level students and practitioners in civil engineering, and earth scientists interested in engineering seismology.

Best Practices in Physics-based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations

Best Practices in Physics-based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations
Author: Luis A. Dalguer
Publisher: Birkhäuser
Total Pages: 333
Release: 2017-12-20
Genre: Science
ISBN: 3319727095


Download Best Practices in Physics-based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations Book in PDF, Epub and Kindle

This volume collects several extended articles from the first workshop on Best Practices in Physics-based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations (BestPSHANI). Held in 2015, the workshop was organized by the IAEA to disseminate the use of physics-based fault-rupture models for ground motion prediction in seismic hazard assessments (SHA). The book also presents a number of new contributions on topics ranging from the seismological aspects of earthquake cycle simulations for source scaling evaluation, seismic source characterization, source inversion and physics-based ground motion modeling to engineering applications of simulated ground motion for the analysis of seismic response of structures. Further, it includes papers describing current practices for assessing seismic hazard in terms of nuclear safety in low seismicity areas, and proposals for physics-based hazard assessment for critical structures near large earthquakes. The papers validate and verify the models by comparing synthetic results with observed data and empirical models. The book is a valuable resource for scientists, engineers, students and practitioners involved in all aspects of SHA.

Earthquake Hazard Assessment

Earthquake Hazard Assessment
Author: Sreevalsa Kolathayar
Publisher: CRC Press
Total Pages: 238
Release: 2018-05-30
Genre: Technology & Engineering
ISBN: 1351387553


Download Earthquake Hazard Assessment Book in PDF, Epub and Kindle

This book represents a significant contribution to the area of earthquake data processing and to the development of region-specific magnitude correlations to create an up-to-date homogeneous earthquake catalogue that is uniform in magnitude scale. The book discusses seismicity analysis and estimation of seismicity parameters of a region at both finer and broader levels using different methodologies. The delineation and characterization of regional seismic source zones which requires reasonable observation and engineering judgement is another subject covered. Considering the complex seismotectonic composition of a region, use of numerous methodologies (DSHA and PSHA) in analyzing the seismic hazard using appropriate instruments such as the logic tree will be elaborated to explicitly account for epistemic uncertainties considering alternative models (for Source model, Mmax estimation and Ground motion prediction equations) to estimate the PGA value at bedrock level. Further, VS30 characterization based on the topographic gradient, to facilitate the development of surface level PGA maps using appropriate amplification factors, is discussed. Evaluation of probabilistic liquefaction potential is also explained in the book. Necessary backgrounds and contexts of the aforementioned topics are elaborated through a case study specific to India which features spatiotemporally varied and complex tectonics. The methodology and outcomes presented in this book will be beneficial to practising engineers and researchers working in the fields of seismology and geotechnical engineering in particular and to society in general.

Improved Seismic Monitoring - Improved Decision-Making

Improved Seismic Monitoring - Improved Decision-Making
Author: National Research Council
Publisher: National Academies Press
Total Pages: 196
Release: 2006-01-04
Genre: Science
ISBN: 0309165032


Download Improved Seismic Monitoring - Improved Decision-Making Book in PDF, Epub and Kindle

Improved Seismic Monitoringâ€"Improved Decision-Making, describes and assesses the varied economic benefits potentially derived from modernizing and expanding seismic monitoring activities in the United States. These benefits include more effective loss avoidance regulations and strategies, improved understanding of earthquake processes, better engineering design, more effective hazard mitigation strategies, and improved emergency response and recovery. The economic principles that must be applied to determine potential benefits are reviewed and the report concludes that although there is insufficient information available at present to fully quantify all the potential benefits, the annual dollar costs for improved seismic monitoring are in the tens of millions and the potential annual dollar benefits are in the hundreds of millions.