Plasma-based Accelerator Structures

Plasma-based Accelerator Structures
Author:
Publisher:
Total Pages: 106
Release: 1999
Genre:
ISBN:


Download Plasma-based Accelerator Structures Book in PDF, Epub and Kindle

Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas.

Phase Space Dynamics in Plasma Based Wakefield Acceleration

Phase Space Dynamics in Plasma Based Wakefield Acceleration
Author: Xinlu Xu
Publisher: Springer Nature
Total Pages: 138
Release: 2020-01-02
Genre: Science
ISBN: 9811523819


Download Phase Space Dynamics in Plasma Based Wakefield Acceleration Book in PDF, Epub and Kindle

This book explores several key issues in beam phase space dynamics in plasma-based wakefield accelerators. It reveals the phase space dynamics of ionization-based injection methods by identifying two key phase mixing processes. Subsequently, the book proposes a two-color laser ionization injection scheme for generating high-quality beams, and assesses it using particle-in-cell (PIC) simulations. To eliminate emittance growth when the beam propagates between plasma accelerators and traditional accelerator components, a method using longitudinally tailored plasma structures as phase space matching components is proposed. Based on the aspects above, a preliminary design study on X-ray free-electron lasers driven by plasma accelerators is presented. Lastly, an important type of numerical noise—the numerical Cherenkov instabilities in particle-in-cell codes—is systematically studied.

Self-mapping the Longitudinal Field Structure of a Nonlinear Plasma Accelerator Cavity

Self-mapping the Longitudinal Field Structure of a Nonlinear Plasma Accelerator Cavity
Author:
Publisher:
Total Pages:
Release: 2016
Genre:
ISBN:


Download Self-mapping the Longitudinal Field Structure of a Nonlinear Plasma Accelerator Cavity Book in PDF, Epub and Kindle

The preservation of emittance of the accelerating beam is the next challenge for plasma-based accelerators envisioned for future light sources and colliders. The field structure of a highly nonlinear plasma wake is potentially suitable for this purpose but has not been yet measured. Here we show that the longitudinal variation of the fields in a nonlinear plasma wakefield accelerator cavity produced by a relativistic electron bunch can be mapped using the bunch itself as a probe. We find that, for much of the cavity that is devoid of plasma electrons, the transverse force is constant longitudinally to within ±3% (r.m.s.). Moreover, comparison of experimental data and simulations has resulted in mapping of the longitudinal electric field of the unloaded wake up to 83 GV m-1 to a similar degree of accuracy. Lastly, these results bode well for high-gradient, high-efficiency acceleration of electron bunches while preserving their emittance in such a cavity.

Laser Wakefield Acceleration

Laser Wakefield Acceleration
Author:
Publisher:
Total Pages: 6
Release: 2014
Genre:
ISBN:


Download Laser Wakefield Acceleration Book in PDF, Epub and Kindle

Particle accelerators enable scientists to study the fundamental structure of the universe, but have become the largest and most expensive of scientific instruments. In this project, we advanced the science and technology of laser-plasma accelerators, which are thousands of times smaller and less expensive than their conventional counterparts. In a laser-plasma accelerator, a powerful laser pulse exerts light pressure on an ionized gas, or plasma, thereby driving an electron density wave, which resembles the wake behind a boat. Electrostatic fields within this plasma wake reach tens of billions of volts per meter, fields far stronger than ordinary non-plasma matter (such as the matter that a conventional accelerator is made of) can withstand. Under the right conditions, stray electrons from the surrounding plasma become trapped within these "wake-fields", surf them, and acquire energy much faster than is possible in a conventional accelerator. Laser-plasma accelerators thus might herald a new generation of compact, low-cost accelerators for future particle physics, x-ray and medical research. In this project, we made two major advances in the science of laser-plasma accelerators. The first of these was to accelerate electrons beyond 1 gigaelectronvolt (1 GeV) for the first time. In experimental results reported in Nature Communications in 2013, about 1 billion electrons were captured from a tenuous plasma (about 1/100 of atmosphere density) and accelerated to 2 GeV within about one inch, while maintaining less than 5% energy spread, and spreading out less than 1/2 milliradian (i.e. 1/2 millimeter per meter of travel). Low energy spread and high beam collimation are important for applications of accelerators as coherent x-ray sources or particle colliders. This advance was made possible by exploiting unique properties of the Texas Petawatt Laser, a powerful laser at the University of Texas at Austin that produces pulses of 150 femtoseconds (1 femtosecond is 10-15 seconds) in duration and 150 Joules in energy (equivalent to the muzzle energy of a small pistol bullet). This duration was well matched to the natural electron density oscillation period of plasma of 1/100 atmospheric density, enabling efficient excitation of a plasma wake, while this energy was sufficient to drive a high-amplitude wake of the right shape to produce an energetic, collimated electron beam. Continuing research is aimed at increasing electron energy even further, increasing the number of electrons captured and accelerated, and developing applications of the compact, multi-GeV accelerator as a coherent, hard x-ray source for materials science, biomedical imaging and homeland security applications. The second major advance under this project was to develop new methods of visualizing the laser-driven plasma wake structures that underlie laser-plasma accelerators. Visualizing these structures is essential to understanding, optimizing and scaling laser-plasma accelerators. Yet prior to work under this project, computer simulations based on estimated initial conditions were the sole source of detailed knowledge of the complex, evolving internal structure of laser-driven plasma wakes. In this project we developed and demonstrated a suite of optical visualization methods based on well-known methods such as holography, streak cameras, and coherence tomography, but adapted to the ultrafast, light-speed, microscopic world of laser-driven plasma wakes. Our methods output images of laser-driven plasma structures in a single laser shot. We first reported snapshots of low-amplitude laser wakes in Nature Physics in 2006. We subsequently reported images of high-amplitude laser-driven plasma "bubbles", which are important for producing electron beams with low energy spread, in Physical Review Letters in 2010. More recently, we have figured out how to image laser-driven structures that change shape while propagating in a single laser shot. The latter techniques, which use t ...

Theoretical Investigations of Plasma-Based Accelerators and Other Advanced Accelerator Concepts

Theoretical Investigations of Plasma-Based Accelerators and Other Advanced Accelerator Concepts
Author:
Publisher:
Total Pages: 5
Release: 2004
Genre:
ISBN:


Download Theoretical Investigations of Plasma-Based Accelerators and Other Advanced Accelerator Concepts Book in PDF, Epub and Kindle

Theoretical investigations of plasma-based accelerators and other advanced accelerator concepts. The focus of the work was on the development of plasma based and structure based accelerating concepts, including laser-plasma, plasma channel, and microwave driven plasma accelerators.

Reviews Of Accelerator Science And Technology - Volume 9: Technology And Applications Of Advanced Accelerator Concepts

Reviews Of Accelerator Science And Technology - Volume 9: Technology And Applications Of Advanced Accelerator Concepts
Author: Alexander Wu Chao
Publisher: World Scientific
Total Pages: 344
Release: 2017-02-20
Genre: Science
ISBN: 9813209593


Download Reviews Of Accelerator Science And Technology - Volume 9: Technology And Applications Of Advanced Accelerator Concepts Book in PDF, Epub and Kindle

Since its invention in the 1920s, particle accelerators have made tremendous progress in accelerator science, technology and applications. However, the fundamental acceleration principle, namely, to apply an external radiofrequency (RF) electric field to accelerate charged particles, remains unchanged. As this method (either room temperature RF or superconducting RF) is approaching its intrinsic limitation in acceleration gradient (measured in MeV/m), it becomes apparent that new methods with much higher acceleration gradient (measured in GeV/m) must be found for future very high energy accelerators as well as future compact (table-top or room-size) accelerators. This volume introduces a number of advanced accelerator concepts (AAC) — their principles, technologies and potential applications. For the time being, none of them stands out as a definitive direction in which to go. But these novel ideas are in hot pursuit and look promising. Furthermore, some AAC requires a high power laser system. This has the implication of bringing two different communities — accelerator and laser — to join forces and work together. It will have profound impact on the future of our field.Also included are two special articles, one on 'Particle Accelerators in China' which gives a comprehensive overview of the rapidly growing accelerator community in China. The other features the person-of-the-issue who was well-known nuclear physicist Jerome Lewis Duggan, a pioneer and founder of a huge community of industrial and medical accelerators in the US.

Summary Report

Summary Report
Author:
Publisher:
Total Pages: 5
Release: 2000
Genre:
ISBN:


Download Summary Report Book in PDF, Epub and Kindle

The talks presented and the work performed on electron beam-driven accelerators in plasmas and structures are summarized. Highlights of the working group include new experimental results from the E-157 Plasma Wakefield Experiment, the E-150 Plasma Lens Experiment and the Argonne Dielectric Structure Wakefield experiments. The presentations inspired discussion and analysis of three working topics: electron hose instability, ion channel lasers and the plasma afterburner.

Tunable Laser Plasma Accelerator Based on Longitudinal Density Tailoring

Tunable Laser Plasma Accelerator Based on Longitudinal Density Tailoring
Author:
Publisher:
Total Pages:
Release: 2011
Genre:
ISBN:


Download Tunable Laser Plasma Accelerator Based on Longitudinal Density Tailoring Book in PDF, Epub and Kindle

Laser plasma accelerators have produced high-quality electron beams with GeV energies from cm-scale devices and are being investigated as hyperspectral fs light sources producing THz to [gamma]-ray radiation and as drivers for future high-energy colliders. These applications require a high degree of stability, beam quality and tunability. Here we report on a technique to inject electrons into the accelerating field of a laser-driven plasma wave and coupling of this injector to a lower-density, separately tunable plasma for further acceleration. The technique relies on a single laser pulse powering a plasma structure with a tailored longitudinal density profile, to produce beams that can be tuned in the range of 100-400 MeV with percent-level stability, using laser pulses of less than 40 TW. The resulting device is a simple stand-alone accelerator or the front end for a multistage higher-energy accelerator.