Photonic Band Gap Materials

Photonic Band Gap Materials
Author: C.M. Soukoulis
Publisher: Springer Science & Business Media
Total Pages: 725
Release: 2012-12-06
Genre: Science
ISBN: 9400916655


Download Photonic Band Gap Materials Book in PDF, Epub and Kindle

Photonic band gap crystals offer unique ways to tailor light and the propagation of electromagnetic waves. In analogy to electrons in a crystal, EM waves propagating in a structure with a periodically-modulated dielectric constant are organized into photonic bands separated by gaps in which propagating states are forbidden. Proposed applications of such photonic band gap crystals, operating at frequencies from microwave to optical, include zero- threshold lasers, low-loss resonators and cavities, and efficient microwave antennas. Spontaneous emission is suppressed for photons in the photonic band gap, offering novel approaches to manipulating the EM field and creating high-efficiency light-emitting structures. Photonic Band Gap Materials identifies three most promising areas of research. The first is materials fabrication, involving the creation of high quality, low loss, periodic dielectric structures. The smallest photonic crystals yet fabricated have been made by machining Si wafers along (110), and some have lattice constants as small as 500 microns. The second area is in applications. Possible applications presented are microwave mirrors, directional antennas, resonators (especially in the 2 GHz region), filters, waveguides, Y splitters, and resonant microcavities. The third area covers fundamentally new physical phenomena in condensed matter physics and quantum optics. An excellent review of recent development, covering theoretical, experimental and applied aspects. Interesting and stimulating reading for active researchers, as well as a useful reference for non-specialists.

Optical Properties of Photonic Structures

Optical Properties of Photonic Structures
Author: Mikhail F. Limonov
Publisher: CRC Press
Total Pages: 535
Release: 2012-06-25
Genre: Science
ISBN: 1439871914


Download Optical Properties of Photonic Structures Book in PDF, Epub and Kindle

The collection of articles in this book offers a penetrating shaft into the still burgeoning subject of light propagation and localization in photonic crystals and disordered media. While the subject has its origins in physics, it has broad significance and applicability in disciplines such as engineering, chemistry, mathematics, and medicine. Unlike other branches of physics, where the phenomena under consideration require extreme conditions of temperature, pressure, energy, or isolation from competing effects, the phenomena related to light localization survive under the most ordinary of conditions. This provides the science described in this book with broad applicability and vitality. However, the greatest challenge to the further development of this field is in the reliable and inexpensive synthesis of materials of the required composition, architecture and length scale, where the proper balance between order and disorder is realized. Similar challenges have been faced and overcome in fields such as semiconductor science and technology. The challenge of photonic crystal synthesis has inspired a variety of novel fabrication protocols such as self-assembly and optical interference lithography that offer much less expensive approaches than conventional semiconductor microlithography. Once these challenges are fully met, it is likely that light propagation and localization in photonic microstructures will be at the heart of a 21st-century revolution in science and technology. —From the Introduction, Sajeev John, University of Toronto, Ontario, Canada One of the first books specifically focused on disorder in photonic structures, Optical Properties of Photonic Structures: Interplay of Order and Disorder explores how both order and disorder provide the key to the different regimes of light transport and to the systematic localization and trapping of light. Collecting contributions from leaders of research activity in the field, the book covers many important directions, methods, and approaches. It describes various one-, two-, and three-dimensional structures, including opals, aperiodic Fibonacci-type photonic structures, photonic amorphous structures, photonic glasses, Lévy glasses, and hypersonic, magnetophotonic, and plasmonic–photonic crystals with nanocavities, quantum dots, and lasing action. The book also addresses practical applications in areas such as optical communications, optical computing, laser surgery, and energy.

Photonic Crystals

Photonic Crystals
Author: John D. Joannopoulos
Publisher: Princeton University Press
Total Pages: 305
Release: 2011-10-30
Genre: Science
ISBN: 1400828244


Download Photonic Crystals Book in PDF, Epub and Kindle

Since it was first published in 1995, Photonic Crystals has remained the definitive text for both undergraduates and researchers on photonic band-gap materials and their use in controlling the propagation of light. This newly expanded and revised edition covers the latest developments in the field, providing the most up-to-date, concise, and comprehensive book available on these novel materials and their applications. Starting from Maxwell's equations and Fourier analysis, the authors develop the theoretical tools of photonics using principles of linear algebra and symmetry, emphasizing analogies with traditional solid-state physics and quantum theory. They then investigate the unique phenomena that take place within photonic crystals at defect sites and surfaces, from one to three dimensions. This new edition includes entirely new chapters describing important hybrid structures that use band gaps or periodicity only in some directions: periodic waveguides, photonic-crystal slabs, and photonic-crystal fibers. The authors demonstrate how the capabilities of photonic crystals to localize light can be put to work in devices such as filters and splitters. A new appendix provides an overview of computational methods for electromagnetism. Existing chapters have been considerably updated and expanded to include many new three-dimensional photonic crystals, an extensive tutorial on device design using temporal coupled-mode theory, discussions of diffraction and refraction at crystal interfaces, and more. Richly illustrated and accessibly written, Photonic Crystals is an indispensable resource for students and researchers. Extensively revised and expanded Features improved graphics throughout Includes new chapters on photonic-crystal fibers and combined index-and band-gap-guiding Provides an introduction to coupled-mode theory as a powerful tool for device design Covers many new topics, including omnidirectional reflection, anomalous refraction and diffraction, computational photonics, and much more.

The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique
Author:
Publisher:
Total Pages:
Release: 2001
Genre:
ISBN:


Download The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique Book in PDF, Epub and Kindle

Over the last ten years, photonic band gap (PBG) theory and technology have become an important area of research because of the numerous possible applications ranging from high-efficiency laser diodes to optical circuitry. This research concentrates on reducing the length scale in the fabrication of layered photonic band gap structures and developing procedures to improve processing consistency. Various procedures and materials have been used in the fabrication of layered PBG structures. This research focused on an economical micro transfer molding approach to create the final PBG structure. A poly dimethylsiloxane (PDMS) rubber mold was created from a silicon substrate. It was filled with epoxy and built layer-by-layer to create a 3-D epoxy structure. This structure was infiltrated with nanoparticle titania or a titania sol-gel, then fired to remove the polymer mold, leaving a monolithic ceramic inverse of the epoxy structure. The final result was a lattice of titania rolds that resembles a face-centered tetragonal structure. The original intent of this research was to miniaturize this process to a bar size small enough to create a photonic band gap for wavelengths of visible electro-magnetic radiation. The factor limiting progress was the absence of a silicon master mold of small enough dimensions. The Iowa State Microelectronics Research Center fabricated samples with periodicities of 2.5 and 1.0 microns with the existing technology, but a sample was needed on the order of 0.3 microns or less. A 0.4 micron sample was received from Sandia National Laboratory, which was made through an electron beam lithography process, but it contained several defects. The results of the work are primarily from the 2.5 and 1.0 micron samples. Most of the work focused on changing processing variables in order to optimize the infiltration procedure for the best results. Several critical parameters were identified, ranging from the ambient conditions to the specifics of the procedure. It is believed that most critical for fabrication of high quality samples is control of the temperature of the sample during and after infiltration, and the rate and amount of time spent applying epoxy to the PDMS.

Photonic Crystals

Photonic Crystals
Author: Steven G. Johnson
Publisher: Springer Science & Business Media
Total Pages: 160
Release: 2001-11-30
Genre: Technology & Engineering
ISBN: 9780792376095


Download Photonic Crystals Book in PDF, Epub and Kindle

Photonic Crystals: The Road from Theory to Practice explores the theoretical road leading to the practical application of photonic band gaps. These new optimal devices are based on symmetry and resonance and the benefits and limitations of hybrid "two dimensional" slab systems in three dimensions. The book also explains that they also signify a return to the ideal of an omnidirectional band gap in a structure inspired by and emulating the simplicity of two dimensions. Finally, the book takes a look at computational methods to solve the mathematical problems that underlie all undertakings in this field. Photonic Crystals: The Road from Theory to Practice should rapidly bring the optical professional and engineer up to speed on this intersection of electromagnetism and solid-state physics. It will also provide an excellent addition to any graduate course in optics.

Photonic Band Gaps and Localization

Photonic Band Gaps and Localization
Author: C.M. Soukoulis
Publisher: Springer Science & Business Media
Total Pages: 509
Release: 2013-11-27
Genre: Science
ISBN: 1489916067


Download Photonic Band Gaps and Localization Book in PDF, Epub and Kindle

This volume contains the papers presented at the NATO Advanced Research Workshop on Localization and Propagation o[ Classical Waves in Random and Periodic Media held in Aghia Pelaghia, Heraklion, Crete, May 26- 30, 1992. The workshop's goal was to bring together theorists and experimentalists from two related areas, localization and photonic band gaps, to highlight their common interests. The objectives of the workshop were (i) to assess the state of-the-art in experimental and theoretical studies of structures exhibiting classical wave band gaps and/or localization, (ii) to discuss how such structures can be fabricated to improve technologies in different areas of physics and engineering, and (iii) to identify problems and set goals for further research. Studies of the propagation of electromagnetic (EM) waves in periodic and/or disordered dielectric structures (photonic band gap structures) have been and continue to be a dynamic area of research. Anderson localization of EM waves in disordered dielectric structures is of fundamental interest where the strong ei-ei interaction efFects entering the eIectron-localization are absent.

Nanolithography

Nanolithography
Author: M Feldman
Publisher: Woodhead Publishing
Total Pages: 599
Release: 2014-02-13
Genre: Technology & Engineering
ISBN: 0857098756


Download Nanolithography Book in PDF, Epub and Kindle

Integrated circuits, and devices fabricated using the techniques developed for integrated circuits, have steadily gotten smaller, more complex, and more powerful. The rate of shrinking is astonishing – some components are now just a few dozen atoms wide. This book attempts to answer the questions, “What comes next? and “How do we get there? Nanolithography outlines the present state of the art in lithographic techniques, including optical projection in both deep and extreme ultraviolet, electron and ion beams, and imprinting. Special attention is paid to related issues, such as the resists used in lithography, the masks (or lack thereof), the metrology needed for nano-features, modeling, and the limitations caused by feature edge roughness. In addition emerging technologies are described, including the directed assembly of wafer features, nanostructures and devices, nano-photonics, and nano-fluidics. This book is intended as a guide to the researcher new to this field, reading related journals or facing the complexities of a technical conference. Its goal is to give enough background information to enable such a researcher to understand, and appreciate, new developments in nanolithography, and to go on to make advances of his/her own. Outlines the current state of the art in alternative nanolithography technologies in order to cope with the future reduction in size of semiconductor chips to nanoscale dimensions Covers lithographic techniques, including optical projection, extreme ultraviolet (EUV), nanoimprint, electron beam and ion beam lithography Describes the emerging applications of nanolithography in nanoelectronics, nanophotonics and microfluidics

Introduction to Photonic and Phononic Crystals and Metamaterials

Introduction to Photonic and Phononic Crystals and Metamaterials
Author: Arthur R. McGurn
Publisher: Springer Nature
Total Pages: 193
Release: 2022-06-01
Genre: Science
ISBN: 3031023846


Download Introduction to Photonic and Phononic Crystals and Metamaterials Book in PDF, Epub and Kindle

Introduction to Photonic and Phononic Crystals and Metamaterials, by Arthur R. McGurn, presents a study of the fundamental properties of optical and acoustic materials which have been of recent interest in nanoscience and device technology. The level of the presentations is appropriate for advanced undergraduates, beginning graduate students, and researchers not directly involved in the field. References are given to guide the reader to more advanced study in these fields. Discussions of the physics of photonic and phononic crystals focus on the transmission properties of optical and acoustic radiation arising from their diffractive interaction in these engineered materials. The frequency transmission and non-transmission bands of radiation are explained in terms of the symmetry properties of the photonic and phononic artificial crystal structures. Basic applications of these properties to a variety of their technological applications are examined. The physics of metamaterials is discussed along with their relationships to the ideas of resonance. Properties of negative index of refraction, perfect lens, and unusual optical effects the new optics of metamaterial media makes available are examined. Related effects in acoustics are also covered. Basic principles of surface acoustic and electromagnetic waves are explained. These form an introduction to the fundamental ideas of the recently developing fields of plasmonics and surface acoustics.

Photonic Crystals

Photonic Crystals
Author: Jean-Michel Lourtioz
Publisher: Springer Science & Business Media
Total Pages: 514
Release: 2008-03-19
Genre: Science
ISBN: 3540783474


Download Photonic Crystals Book in PDF, Epub and Kindle

This book provides the theoretical background required for modelling photonic crystals and their optical properties, while presenting the large variety of devices where photonic crystals have found application. As such, it aims at building bridges between optics, electromagnetism and solid state physics. This second edition includes the most recent developments of two-dimensional photonic crystal devices, as well as some of the last results reported on metamaterials.