Next-Generation Wireless Networks Meet Advanced Machine Learning Applications

Next-Generation Wireless Networks Meet Advanced Machine Learning Applications
Author: Com?a, Ioan-Sorin
Publisher: IGI Global
Total Pages: 356
Release: 2019-01-25
Genre: Technology & Engineering
ISBN: 152257459X


Download Next-Generation Wireless Networks Meet Advanced Machine Learning Applications Book in PDF, Epub and Kindle

The ever-evolving wireless technology industry is demanding new technologies and standards to ensure a higher quality of experience for global end-users. This developing challenge has enabled researchers to identify the present trend of machine learning as a possible solution, but will it meet business velocity demand? Next-Generation Wireless Networks Meet Advanced Machine Learning Applications is a pivotal reference source that provides emerging trends and insights into various technologies of next-generation wireless networks to enable the dynamic optimization of system configuration and applications within the fields of wireless networks, broadband networks, and wireless communication. Featuring coverage on a broad range of topics such as machine learning, hybrid network environments, wireless communications, and the internet of things; this publication is ideally designed for industry experts, researchers, students, academicians, and practitioners seeking current research on various technologies of next-generation wireless networks.

Smart and Sustainable Approaches for Optimizing Performance of Wireless Networks

Smart and Sustainable Approaches for Optimizing Performance of Wireless Networks
Author: Sherin Zafar
Publisher: John Wiley & Sons
Total Pages: 393
Release: 2022-01-28
Genre: Technology & Engineering
ISBN: 1119682533


Download Smart and Sustainable Approaches for Optimizing Performance of Wireless Networks Book in PDF, Epub and Kindle

SMART AND SUSTAINABLE APPROACHES FOR OPTIMIZING PERFORMANCE OF WIRELESS NETWORK Explores the intersection of sustainable growth, green computing and automation, and performance optimization of 5G wireless networks Smart and Sustainable Approaches for Optimizing Performance of Wireless Networks explores how wireless sensing applications, green computing, and Big Data analytics can increase the energy efficiency and environmental sustainability of real-time applications across areas such as healthcare, agriculture, construction, and manufacturing. Bringing together an international team of expert contributors, this authoritative volume highlights the limitations of conventional technologies and provides methodologies and approaches for addressing Quality of Service (QOS) issues and optimizing network performance. In-depth chapters cover topics including blockchain-assisted secure data sharing, smart 5G Internet of Things (IoT) scenarios, intelligent management of ad hoc networks, and the use of Artificial Intelligence (AI), Machine Learning (ML) and Deep Learning (DL) techniques in smart healthcare, smart manufacturing, and smart agriculture. Covers design, implementation, optimization, and sustainability of wireless and sensor-based networks Discusses concepts of sustainability and green computing as well as their relevance to society and the environment Addresses green automation applications in various disciplines such as computer science, nanoscience, information technology (IT), and biochemistry Explores various smart and sustainable approaches for current wireless and sensor-based networks Includes detailed case studies of current methodologies, applications, and implementations Smart and Sustainable Approaches for Optimizing Performance of Wireless Networks: Real-time Applications is an essential resource for academic researchers and industry professionals working to integrate sustainable development and Information and Communications Technology (ICT).

Data-Driven Intelligence in Wireless Networks

Data-Driven Intelligence in Wireless Networks
Author: Muhammad Khalil Afzal
Publisher: CRC Press
Total Pages: 267
Release: 2023-03-27
Genre: Computers
ISBN: 1000841332


Download Data-Driven Intelligence in Wireless Networks Book in PDF, Epub and Kindle

Covers details on wireless communication problems, conducive for data-driven solutions Provides a comprehensive account of programming languages, tools, techniques, and good practices Provides an introduction to data-driven techniques applied to wireless communication systems Examines data-driven techniques, performance, and design issues in wireless networks Includes several case studies that examine data-driven solution for QoS in heterogeneous wireless networks

Federated Learning for Wireless Networks

Federated Learning for Wireless Networks
Author: Choong Seon Hong
Publisher: Springer Nature
Total Pages: 257
Release: 2022-01-01
Genre: Computers
ISBN: 9811649634


Download Federated Learning for Wireless Networks Book in PDF, Epub and Kindle

Recently machine learning schemes have attained significant attention as key enablers for next-generation wireless systems. Currently, wireless systems are mostly using machine learning schemes that are based on centralizing the training and inference processes by migrating the end-devices data to a third party centralized location. However, these schemes lead to end-devices privacy leakage. To address these issues, one can use a distributed machine learning at network edge. In this context, federated learning (FL) is one of most important distributed learning algorithm, allowing devices to train a shared machine learning model while keeping data locally. However, applying FL in wireless networks and optimizing the performance involves a range of research topics. For example, in FL, training machine learning models require communication between wireless devices and edge servers via wireless links. Therefore, wireless impairments such as uncertainties among wireless channel states, interference, and noise significantly affect the performance of FL. On the other hand, federated-reinforcement learning leverages distributed computation power and data to solve complex optimization problems that arise in various use cases, such as interference alignment, resource management, clustering, and network control. Traditionally, FL makes the assumption that edge devices will unconditionally participate in the tasks when invited, which is not practical in reality due to the cost of model training. As such, building incentive mechanisms is indispensable for FL networks. This book provides a comprehensive overview of FL for wireless networks. It is divided into three main parts: The first part briefly discusses the fundamentals of FL for wireless networks, while the second part comprehensively examines the design and analysis of wireless FL, covering resource optimization, incentive mechanism, security and privacy. It also presents several solutions based on optimization theory, graph theory, and game theory to optimize the performance of federated learning in wireless networks. Lastly, the third part describes several applications of FL in wireless networks.

Improving Next-generation Wireless Network Performance and Reliability with Deep Learning

Improving Next-generation Wireless Network Performance and Reliability with Deep Learning
Author: Faris Bassam Mismar
Publisher:
Total Pages: 324
Release: 2019
Genre:
ISBN:


Download Improving Next-generation Wireless Network Performance and Reliability with Deep Learning Book in PDF, Epub and Kindle

A rudimentary question whether machine learning in general, or deep learning in particular, could add to the well-established field of wireless communications, which has been evolving for close to a century, is often raised. While the use of deep learning based methods is likely to help build intelligent wireless solutions, this use becomes particularly challenging for the lower layers in the wireless communication stack. The introduction of the fifth generation of wireless communications (5G) has triggered the demand for “network intelligence” to support its promises for very high data rates and extremely low latency. Consequently, 5G wireless operators are faced with the challenges of network complexity, diversification of services, and personalized user experience. Industry standards have created enablers (such as the network data analytics function), but these enablers focus on post-mortem analysis at higher stack layers and have a periodicity in the time scale of seconds (or larger). The goal of this dissertation is to show a solution for these challenges and how a data-driven approach using deep learning could add to the field of wireless communications. In particular, I propose intelligent predictive and prescriptive abilities to boost reliability and eliminate performance bottlenecks in 5G cellular networks and beyond, show contributions that justify the value of deep learning in wireless communications across several different layers, and offer in-depth analysis and comparisons with baselines and industry standards. First, to improve multi-antenna network reliability against wireless impairments with power control and interference coordination for both packetized voice and beamformed data bearers, I propose the use of a joint beamforming, power control, and interference coordination algorithm based on deep reinforcement learning. This algorithm uses a string of bits and logic operations to enable simultaneous actions to be performed by the reinforcement learning agent. Consequently, a joint reward function is also proposed. I compare the performance of my proposed algorithm with the brute force approach and show that similar performance is achievable but with faster run-time as the number of transmit antennas increases. Second, in enhancing the performance of coordinated multipoint, I propose the use of deep learning binary classification to learn a surrogate function to trigger a second transmission stream instead of depending on the popular signal to interference plus noise measurement quantity. This surrogate function improves the users' sum-rate through focusing on pre-logarithmic terms in the sum-rate formula, which have larger impact on this rate. Third, performance of band switching can be improved without the need for a full channel estimation. My proposal of using deep learning to classify the quality of two frequency bands prior to granting the band switching leads to a significant improvement in users' throughput. This is due to the elimination of the industry standard measurement gap requirement—a period of silence where no data is sent to the users so they could measure the frequency bands before switching. In this dissertation, a group of algorithms for wireless network performance and reliability for downlink are proposed. My results show that the introduction of user coordinates enhance the accuracy of the predictions made with deep learning. Also, the choice of signal to interference plus noise ratio as the optimization objective may not always be the best choice to improve user throughput rates. Further, exploiting the spatial correlation of channels in different frequency bands can improve certain network procedures without the need for perfect knowledge of the per-band channel state information. Hence, an understanding of these results help develop novel solutions to enhancing these wireless networks at a much smaller time scale compared to the industry standards today

Towards Machine Learning Enabled Future-generation Wireless Network Optimization

Towards Machine Learning Enabled Future-generation Wireless Network Optimization
Author: Peizhi Yan
Publisher:
Total Pages:
Release: 2020
Genre:
ISBN:


Download Towards Machine Learning Enabled Future-generation Wireless Network Optimization Book in PDF, Epub and Kindle

We anticipate that there will be an enormous amount of wireless devices connected to the Internet through the future-generation wireless networks. Those wireless devices vary from self-driving vehicles to smart wearable devices and intelligent house- hold electrical appliances. Under such circumstances, the network resource optimization faces the challenge of the requirement of both flexibility and performance. Current wireless communication still relies on one-size-fits-all optimization algorithms, which require meticulous design and elaborate maintenance, thus not flexible and cannot meet the growing requirements well. The future-generation wireless networks should be "smarter", which means that the artificial intelligence-driven software-level design will play a more significant role in network optimization. In this thesis, we present three different ways of leveraging artificial intelligence (AI) and machine learning (ML) to design network optimization algorithms for three wireless Internet of things network optimization problems. Our ML-based approaches cover the use of multi-layer feed-forward artificial neural network and the graph convolutional network as the core of our AI decision-makers. The learning methods are supervised learning (for static decision-making) and reinforcement learning (for dynamic decision-making). We demonstrate the viability of applying ML in future- generation wireless network optimizations through extensive simulations. We summarize our discovery on the advantage of using ML in wireless network optimizations as the following three aspects: 1. Enabling the distributed decision-making to achieve the performance that near a centralized solution, without the requirement of multi-hop information; 2. Tackling with dynamic optimization through distributed self-learning decision- making agents, instead of designing a sophisticated optimization algorithm; 3. Reducing the time used in optimizing the solution of a combinatorial optimization problem. We envision that in the foreseeable future, AI and ML could help network service designers and operators to improve the network quality of experience swiftly and less expensively.

LTE, WiMAX and WLAN Network Design, Optimization and Performance Analysis

LTE, WiMAX and WLAN Network Design, Optimization and Performance Analysis
Author: Leonhard Korowajczuk
Publisher: John Wiley & Sons
Total Pages: 784
Release: 2011-08-22
Genre: Technology & Engineering
ISBN: 047074149X


Download LTE, WiMAX and WLAN Network Design, Optimization and Performance Analysis Book in PDF, Epub and Kindle

A technological overview of LTE and WiMAX LTE, WiMAX and WLAN Network Design, Optimization and Performance Analysis provides a practical guide to LTE and WiMAX technologies introducing various tools and concepts used within. In addition, topics such as traffic modelling of IP-centric networks, RF propagation, fading, mobility, and indoor coverage are explored; new techniques which increase throughput such as MIMO and AAS technology are highlighted; and simulation, network design and performance analysis are also examined. Finally, in the latter part of the book Korowajczuk gives a step-by-step guide to network design, providing readers with the capability to build reliable and robust data networks. By focusing on LTE and WiMAX this book extends current network planning approaches to next generation wireless systems based on OFDMA, providing an essential resource for engineers and operators of fixed and wireless broadband data access networks. With information presented in a sequential format, LTE, WiMAX and WLAN Network Design, Optimization and Performance Analysis aids a progressive development of knowledge, complementing latter graduate and postgraduate courses while also providing a valuable resource to network designers, equipment vendors, reference material, operators, consultants, and regulators. Key Features: One of the first books to comprehensively explain and evaluate LTE Provides an unique explanation of the basic concepts involved in wireless broadband technologies and their applications in LTE, WiMAX, and WLAN before progressing to the network design Demonstrates the application of network planning for LTE and WiMAX with theoretical and practical approaches Includes all aspects of system design and optimization, such as dynamic traffic simulations, multi-layered traffic analysis, statistical interference analysis, and performance estimations