Vertical Axis Hydrokinetic Turbines: Numerical and Experimental Analyses

Vertical Axis Hydrokinetic Turbines: Numerical and Experimental Analyses
Author: Mabrouk Mosbahi
Publisher: Bentham Science Publishers
Total Pages: 137
Release: 2021-12-14
Genre: Science
ISBN: 168108869X


Download Vertical Axis Hydrokinetic Turbines: Numerical and Experimental Analyses Book in PDF, Epub and Kindle

This handbook is a guide to numerical and experimental processes that are used to analyze and improve the efficiency of vertical axis rotors. Chapters present information that is required to optimize the geometrical parameters of rotors or understand how to augment upstream water velocity. The authors of this volume present a numerical model to characterize the water flow around the vertical axis rotors using commercial CFD code in Ansys Fluent®. The software has been used to select adequate parameters and perform computational simulations of spiral Darrieus turbines. The contents of the volume explain the experimental procedure carried out to evaluate the performance of the spiral Darrieus turbine, how to characterize the water flow in the vicinity of the tested turbine and the method to assess the spiral angle influence on the turbine performance parameters. Results for different spiral angles (ranging from 10° to 40°) are presented. This volume is a useful handbook for engineers involved in power plant design and renewable energy sectors who are studying the computational fluid dynamics of vertical axis turbines (such as Darrieus turbines) that are used in hydropower projects. Key features: - 4 chapters that cover the numerical and experimental analysis of vertical axis rotors and hydrokinetic turbines - Simple structured layout for easy reading (methodology, models and results) - Bibliographic study to introduce the reader to the subject - A wide range of parameters included in experiments - A comprehensive appendix of tables for mechanical parameters, statistical models, rotor parameters and geometric details.

Vertical Axis Hydrokinetic Turbines

Vertical Axis Hydrokinetic Turbines
Author: Mabrouk Mosbahi; Ahmed
Publisher:
Total Pages: 150
Release: 2021-12-14
Genre:
ISBN: 9781681088709


Download Vertical Axis Hydrokinetic Turbines Book in PDF, Epub and Kindle

This handbook is a guide to numerical and experimental processes that are used to analyze and improve the efficiency of vertical axis rotors. Chapters present information that is required to optimize the geometrical parameters of rotors or understand how to augment upstream water velocity. The authors of this volume present a numerical model to characterize the water flow around the vertical axis rotors using commercial CFD code in Ansys Fluent®. The software has been used to select adequate parameters and perform computational simulations of spiral Darrieus turbines. The contents of the volume explain the experimental procedure carried out to evaluate the performance of the spiral Darrieus turbine, how to characterize the water flow in the vicinity of the tested turbine and the method to assess the spiral angle influence on the turbine performance parameters. Results for different spiral angles (ranging from 10° to 40°) are presented. This volume is a useful handbook for engineers involved in power plant design and renewable energy sectors who are studying the computational fluid dynamics of vertical axis turbines (such as Darrieus turbines) that are used in hydropower projects. Key features: - 4 chapters that cover the numerical and experimental analysis of vertical axis rotors and hydrokinetic turbines - Simple structured layout for easy reading (methodology, models and results) - Bibliographic study to introduce the reader to the subject - A wide range of parameters included in experiments - A comprehensive appendix of tables for mechanical parameters, statistical models, rotor parameters and geometric details.

Design and Critical Performance Evaluation of Horizontal Axis Hydrokinetic Turbines

Design and Critical Performance Evaluation of Horizontal Axis Hydrokinetic Turbines
Author: Suchi Subhra Mukherji
Publisher:
Total Pages: 202
Release: 2010
Genre: Electronic dissertations
ISBN:


Download Design and Critical Performance Evaluation of Horizontal Axis Hydrokinetic Turbines Book in PDF, Epub and Kindle

"The current work discusses the hydrodynamic performance of horizontal axis hydrokinetic turbines (HAHkT) under different turbine geometries and flow conditions. Hydrokinetic turbines are a class of zero-head hydropower systems which utilize kinetic energy of flowing water to drive a generator. However, such turbines often suffer from low-efficiency. A detailed computational fluid dynamics study was performed using a low-order k-[omega] SST (Shear Stress Transport) turbulence model to examine the effect of each of tip-speed ratio, solidity, angle of attack and number of blades on the performance of small HAHkTs with a power capacity of 10 kW. The numerical models (both two-dimensional and three-dimensional) developed for these purposes were validated with blade element momentum theory. The two-dimensional numerical models suggest an optimum angle of attack that maximizes lift as well as lift to drag ratio thereby yielding the maximum power output. In addition, our three-dimensional model is used to estimate optimum turbine solidity and blade numbers that produces maximum power coefficient at a given tip speed ratio. Furthermore, the axial velocity deficit downstream of the turbine rotor provides quantitative details of energy loss suffered by each turbine at ambient flow conditions. The velocity distribution provides confirmation of the stall-delay phenomenon that occurs due to the rotation of the turbine. In addition, it provides further verification of optimum tip speed ratio corresponding to maximum power coefficient obtained from the solidity analysis"--Abstract, leaf iii.

Computational Fluid Dynamic Simulation of Vertical Axis Hydrokinetic Turbines

Computational Fluid Dynamic Simulation of Vertical Axis Hydrokinetic Turbines
Author: Edwin Lenin Chica Arrieta
Publisher:
Total Pages: 0
Release: 2022
Genre: Electronic books
ISBN:


Download Computational Fluid Dynamic Simulation of Vertical Axis Hydrokinetic Turbines Book in PDF, Epub and Kindle

Hydrokinetic turbines are one of the technological alternatives to generate and supply electricity for rural communities isolated from the national electrical grid with almost zero emission. These technologies may appear suitable to convert kinetic energy of canal, river, tidal, or ocean water currents into electricity. Nevertheless, they are in an early stage of development; therefore, studying the hydrokinetic system is an active topic of academic research. In order to improve their efficiencies and understand their performance, several works focusing on both experimental and numerical studies have been reported. For the particular case of flow behavior simulation of hydrokinetic turbines with complex geometries, the use of computational fluids dynamics (CFD) nowadays is still suffering from a high computational cost and time; thus, in the first instance, the analysis of the problem is required for defining the computational domain, the mesh characteristics, and the model of turbulence to be used. In this chapter, CFD analysis of a H-Darrieus vertical axis hydrokinetic turbines is carried out for a rated power output of 0.5 kW at a designed water speed of 1.5 m/s, a tip speed ratio of 1.75, a chord length of 0.33 m, a swept area of 0.636 m2, 3 blades, and NACA 0025 hydrofoil profile.

Development of Horizontal Axis Hydrokinetic Turbine Using Experimental and Numerical Approaches

Development of Horizontal Axis Hydrokinetic Turbine Using Experimental and Numerical Approaches
Author: Abdulaziz Mohammed Abutunis
Publisher:
Total Pages: 165
Release: 2020
Genre:
ISBN:


Download Development of Horizontal Axis Hydrokinetic Turbine Using Experimental and Numerical Approaches Book in PDF, Epub and Kindle

"Hydrokinetic energy conversion systems (HECSs) are emerging as viable solutions for harnessing the kinetic energy in river streams and tidal currents due to their low operating head and flexible mobility. This study is focused on the experimental and numerical aspects of developing an axial HECS for applications with low head ranges and limited operational space. In Part I, blade element momentum (BEM) and neural network (NN) models were developed and coupled to overcome the BEM's inherent convergence issues which hinder the blade design process. The NNs were also used as a multivariate interpolation tool to estimate the blade hydrodynamic characteristics required by the BEM model. The BEM-NN model was able to operate without convergence problems and provide accurate results even at high tip speed ratios. In Part II, an experimental setup was developed and tested in a water tunnel. The effects of flow velocity, pitch angle, number of blades, number of rotors, and duct reducer were investigated. The performance was improved as rotors were added to the system. However, as rotors added, their contribution was less. Significant performance improvement was observed after incorporating a duct reducer. In Part III, a computational fluid dynamics (CFD) simulation was conducted to derive the optimum design criteria for the multi-turbine system. Solidity, blockage, and their interactive effects were studied. The system configuration was altered, then its performance and flow characteristics were investigated. The experimental setup was upgraded to allow for blockage correction. Particle image velocimetry was used to investigate the wake velocity profiles and validate the CFD model. The flow characteristics and their effects on the turbines performance were analyzed"--Abstract, page iv.