Optimizing Accuracy of Determinations of CO2 Storage Capacity and Permanence, and Designing More Efficient Storage Operations

Optimizing Accuracy of Determinations of CO2 Storage Capacity and Permanence, and Designing More Efficient Storage Operations
Author:
Publisher:
Total Pages: 207
Release: 2015
Genre:
ISBN:


Download Optimizing Accuracy of Determinations of CO2 Storage Capacity and Permanence, and Designing More Efficient Storage Operations Book in PDF, Epub and Kindle

At a potential injection site on the Rock Springs Uplift in southwest Wyoming, an investigation of confining layers was undertaken to develop and test methodology, identify key data requirements, assess previous injection scenarios relative to detailed confining layer properties, and integrate all findings in order to reduce the uncertainty of CO2 storage permanence. The assurance of safe and permanent storage of CO2 at a storage site involves a detailed evaluation of the confining layers. Four suites of field data were recognized as crucial for determining storage permanence relative to the confining layers; seismic, core and petrophysical data from a wellbore, formation fluid samples, and in-situ formation tests. Core and petrophysical data were used to create a vertical heterogenic property model that defined porosity, permeability, displacement pressure, geomechanical strengths, and diagenetic history. These analyses identified four primary confining layers and multiple redundant confining layers. In-situ formation tests were used to evaluate fracture gradients, regional stress fields, baseline microseismic data, step-rate injection tests, and formation perforation responses. Seismic attributes, correlated with the vertical heterogenic property models, were calculated and used to create a 3-D volume model over the entire site. The seismic data provided the vehicle to transform the vertical heterogenic property model into a horizontal heterogenic property model, which allowed for the evaluation of confining layers across the entire study site without risking additional wellbore perforations. Lastly, formation fluids were collected and analyzed for geochemical and isotopic compositions from stacked reservoir systems. These data further tested primary confining layers, by evaluating the evidence of mixing between target reservoirs (mixing would imply an existing breach of primary confining layers). All data were propagated into a dynamic, heterogenic geologic property model used to test various injection scenarios. These tests showed that the study site could retain 25MT of injected CO2 over an injection lifespan of 50 years. Major findings indicate that active reservoir pressure management through reservoir fluid production (minimum of three production wells) greatly reduces the risk of breaching a confining layer. To address brine production, a well completion and engineering study was incorporated to reduce the risks of scaling and erosion during injection and production. These scenarios suggest that the dolostone within the Mississippian Madison Limestone is the site's best injection/production target by two orders of magnitude, and that commercial well equipment would meet all performance requirements. This confirms that there are multiple confining layers in southwest Wyoming that are capable of retaining commercial volumes of CO3, making Wyoming's Paleozoic reservoirs ideal storage targets for low-risk injection and long-term storage. This study also indicates that column height retention calculations are reduced in a CO2-brine system relative to a hydrocarbon-brine system, which is an observation that affects all potential CCS sites. Likewise, this study identified the impacts that downhole testing imparts on reservoir fluids, and the likelihood of introducing uncertainty in baseline site assumptions and later modeling.

The Geologic and Economic Analysis of Stacked CO2 Storage Systems

The Geologic and Economic Analysis of Stacked CO2 Storage Systems
Author: Stuart Hedrick Coleman
Publisher:
Total Pages: 192
Release: 2010
Genre:
ISBN:


Download The Geologic and Economic Analysis of Stacked CO2 Storage Systems Book in PDF, Epub and Kindle

Stacked storage systems are a viable carbon management operation, especially in regions with potential growth in CO2 enhanced oil recovery (EOR) projects. Under a carbon constrained environment, the industrial Texas Gulf Coast is an ideal area for development of stacked storage operations, with a characteristically high CO2 intensity and abundance of aging oil fields. The development of EOR along the Texas Gulf Coast is limited by CO2 supply constraints. A stacked storage system is implemented with an EOR project to manage the temporal differences between the operation of a coal-fired power plant and EOR production. Currently, most EOR operations produce natural CO2 from geologic formations. A switch to anthropogenic CO2 sources would require an EOR operator to handle volumes of CO2 beyond EOR usage. The use of CO2 in an EOR operation is controlled and managed to maximize oil production, but increasing injection rates to handle the volume of CO2 captured from a coal plant can decrease oil production efficiency. With stacked storage operations, a CO2 storage reservoir is implemented with an EOR project to maintain injection capacity equivalent to a coal plant's emissions under a carbon constrained environment. By adding a CO2 storage operation, revenue can still be generated from EOR production, but it is considerably less than just operating an EOR project. The challenge for an efficient stacked storage project is to optimize oil production and maximize profits, while minimizing the revenue reduction of pure carbon sequestration. There is an abundance of saline aquifers along the Texas Gulf Coast, including the Wilcox, Vicksburg, and Miocene formations. To make a stacked storage system more viable and reduce storage costs, maximizing injectivity is critical, as storage formations are evaluated on a cost-per-ton injected basis. This cost-per-ton injected criteria, also established as injection efficiency, incorporates reservoir injectivity and depth dependant drilling costs to determine the most effective storage formation to incorporate with an EOR project. With regionally adequate depth to maximize injectivity while maintaining reasonable drilling costs, the Vicksburg formation is typically the preferred storage reservoir in a stacked storage system along the Texas Gulf Coast. Of the eleven oil fields analyzed on a net present value basis, the Hastings field has the greatest potential for both EOR and stacked storage operations.

Engineering Aspects of Geologic CO2 Storage

Engineering Aspects of Geologic CO2 Storage
Author: Dayanand Saini
Publisher: Springer
Total Pages: 85
Release: 2017-03-22
Genre: Technology & Engineering
ISBN: 3319560743


Download Engineering Aspects of Geologic CO2 Storage Book in PDF, Epub and Kindle

This timely book explores the lessons learned in and potentials of injecting supercritical CO2 into depleted oil and gas reservoirs, in order to maximize both hydrocarbon recovery and the storage capacities of injected CO2. The author provides a detailed discussion of key engineering parameters of simultaneous CO2 enhanced oil recovery and CO2 storage in depleted hydrocarbon reservoirs. These include candidate site selection, CO2 oil miscibility, maximizing CO2-storage capacity in enhanced oil recovery operations, well configurations, and cap and reservoir rock integrity. The book will help practicing professionals devise strategies to curb greenhouse gas emissions from the use of fossil fuels for energy production via geologic CO2 storage, while developing CO2 injection as an economically viable and environmentally sensible business model for hydrocarbon exploration and production in a low carbon economy.

Geological CO2 Storage Characterization

Geological CO2 Storage Characterization
Author: Ronald C. Surdam
Publisher: Springer Science & Business Media
Total Pages: 310
Release: 2013-12-12
Genre: Science
ISBN: 1461457882


Download Geological CO2 Storage Characterization Book in PDF, Epub and Kindle

This book investigates geological CO2 storage and its role in greenhouse gas emissions reduction, enhanced oil recovery, and environmentally responsible use of fossil fuels. Written for energy/environmental regulators at every level of government (federal, state, etc.), scientists/academics, representatives from the power and fossil energy sectors, NGOs, and other interested parties, this book uses the characterization of the Rock Springs Uplift site in Wyoming as an integrated case study to illustrate the application of geological CO2 storage science, principles, and theory in a real-world scenario.

Data-Driven Analytics for the Geological Storage of CO2

Data-Driven Analytics for the Geological Storage of CO2
Author: Shahab Mohaghegh
Publisher: CRC Press
Total Pages: 282
Release: 2018-05-20
Genre: Science
ISBN: 1315280809


Download Data-Driven Analytics for the Geological Storage of CO2 Book in PDF, Epub and Kindle

Data-driven analytics is enjoying unprecedented popularity among oil and gas professionals. Many reservoir engineering problems associated with geological storage of CO2 require the development of numerical reservoir simulation models. This book is the first to examine the contribution of artificial intelligence and machine learning in data-driven analytics of fluid flow in porous environments, including saline aquifers and depleted gas and oil reservoirs. Drawing from actual case studies, this book demonstrates how smart proxy models can be developed for complex numerical reservoir simulation models. Smart proxy incorporates pattern recognition capabilities of artificial intelligence and machine learning to build smart models that learn the intricacies of physical, mechanical and chemical interactions using precise numerical simulations. This ground breaking technology makes it possible and practical to use high fidelity, complex numerical reservoir simulation models in the design, analysis and optimization of carbon storage in geological formations projects.

Geological Storage of CO2 – Long Term Security Aspects

Geological Storage of CO2 – Long Term Security Aspects
Author: Axel Liebscher
Publisher: Springer
Total Pages: 251
Release: 2015-02-21
Genre: Science
ISBN: 3319139304


Download Geological Storage of CO2 – Long Term Security Aspects Book in PDF, Epub and Kindle

This book explores the industrial use of secure, permanent storage technologies for carbon dioxide (CO2), especially geological CO2 storage. Readers are invited to discover how this greenhouse gas could be spared from permanent release into the atmosphere through storage in deep rock formations. Themes explored here include CO2 reservoir management, caprock formation, bio-chemical processes and fluid migration. Particular attention is given to groundwater protection, the improvement of sensor technology, borehole seals and cement quality. A collaborative work by scientists and industrial partners, this volume presents original research, it investigates several aspects of innovative technologies for medium-term use and it includes a detailed risk analysis. Coal-based power generation, energy consuming industrial processes (such as steel and cement) and the burning of biomass all result in carbon dioxide. Those involved in such industries who are considering geological storage of CO2, as well as earth scientists and engineers will value this book and the innovative monitoring methods described. Researchers in the field of computer imaging and pattern recognition will also find something of interest in these chapters.

CO2 EOR-storage Design Optimization Under Uncertainty

CO2 EOR-storage Design Optimization Under Uncertainty
Author: Amin Ettehadtavakkol
Publisher:
Total Pages: 728
Release: 2013
Genre:
ISBN:


Download CO2 EOR-storage Design Optimization Under Uncertainty Book in PDF, Epub and Kindle

A partnership between oilfield operators and the federal government in the coupled CO2 enhanced oil recovery (EOR) and storage projects brings long-term benefits for both. We quantify the win-win condition for this partnership in terms of an optimum storage tax credit. We describe the field-scale design optimization of coupled CO2-EOR and storage operations from the viewpoint of oilfield operators. We introduce a CO2 market model and investigate two special CO2 market problems, namely a fixed storage requirement and an integrated asset optimization. The first problem follows an environmental objective by giving priority to the storage element of CO2-EOR and storage; the second prioritizes the oil recovery and relies on the principles of a free market where CO2 is a commodity and the commitment to storage is made based on the economic benefits. We investigate the CO2 market sustainability conditions and quantitatively derive them for the fixed storage requirement and integrated asset optimization problems. Ultimately, we quantify the impact of storage tax credit on the operator benefits, the federal government benefits, and the optimum economic storage capacity of an oilfield. CO2 EOR-storage projects are long-term and capital-intensive and therefore vulnerable to the risks of the CO2 market. Two important uncertain economic parameters are investigated, the oil price and the storage tax credit. The government plays an important role in reducing the CO2 market risks because it has the leverage to regulate the storage tax credit. The stochastic optimization results show that a transparent storage tax credit reinforces the sustainability of the CO2 market and helps both the government and the oilfield operators boost their long-term benefits.

How to Store CO2 Underground: Insights from early-mover CCS Projects

How to Store CO2 Underground: Insights from early-mover CCS Projects
Author: Philip Ringrose
Publisher: Springer Nature
Total Pages: 129
Release: 2020-01-01
Genre: Science
ISBN: 303033113X


Download How to Store CO2 Underground: Insights from early-mover CCS Projects Book in PDF, Epub and Kindle

This book introduces the scientific basis and engineering practice for CO2 storage, covering topics such as storage capacity, trapping mechanisms, CO2 phase behaviour and flow dynamics, engineering and geomechanics of geological storage, injection well design, and geophysical and geochemical monitoring. It also provides numerous examples from the early mover CCS projects, notably Sleipner and Snøhvit offshore Norway, as well as other pioneering CO2 storage projects.

Geological Storage of Carbon Dioxide (CO2)

Geological Storage of Carbon Dioxide (CO2)
Author: J Gluyas
Publisher: Elsevier
Total Pages: 380
Release: 2013-11-23
Genre: Technology & Engineering
ISBN: 085709727X


Download Geological Storage of Carbon Dioxide (CO2) Book in PDF, Epub and Kindle

Geological storage and sequestration of carbon dioxide, in saline aquifers, depleted oil and gas fields or unminable coal seams, represents one of the most important processes for reducing humankind’s emissions of greenhouse gases. Geological storage of carbon dioxide (CO2) reviews the techniques and wider implications of carbon dioxide capture and storage (CCS). Part one provides an overview of the fundamentals of the geological storage of CO2. Chapters discuss anthropogenic climate change and the role of CCS, the modelling of storage capacity, injectivity, migration and trapping of CO2, the monitoring of geological storage of CO2, and the role of pressure in CCS. Chapters in part two move on to explore the environmental, social and regulatory aspects of CCS including CO2 leakage from geological storage facilities, risk assessment of CO2 storage complexes and public engagement in projects, and the legal framework for CCS. Finally, part three focuses on a variety of different projects and includes case studies of offshore CO2 storage at Sleipner natural gas field beneath the North Sea, the CO2CRC Otway Project in Australia, on-shore CO2 storage at the Ketzin pilot site in Germany, and the K12-B CO2 injection project in the Netherlands. Geological storage of carbon dioxide (CO2) is a comprehensive resource for geoscientists and geotechnical engineers and academics and researches interested in the field. Reviews the techniques and wider implications of carbon dioxide capture and storage (CCS) An overview of the fundamentals of the geological storage of CO2 discussing the modelling of storage capacity, injectivity, migration and trapping of CO2 among other subjects Explores the environmental, social and regulatory aspects of CCS including CO2 leakage from geological storage facilities, risk assessment of CO2 storage complexes and the legal framework for CCS

Underground Storage of CO2 and Energy

Underground Storage of CO2 and Energy
Author: Michael Z. Hou
Publisher: CRC Press
Total Pages: 386
Release: 2010-07-07
Genre: Technology & Engineering
ISBN: 0415600499


Download Underground Storage of CO2 and Energy Book in PDF, Epub and Kindle

Of the known greenhouse gases, political attention to date has primarily focused on carbon dioxide (CO2), whereby it is assumed that underground storages of crude oil and natural gas through Carbon Capture and Storage (CCS) technology could contribute significantly to global climate protection. Underground Storage of CO2 and Energy covers many aspects of CO2 sequestration and its usage, as well as of underground storage of fossil and renewable energy sources, and is divided into 8 parts: • Environmental and Energy Policy & Law for Underground Storage • Geological Storage and Monitoring • Enhanced Gas and Oil Recovery Using CO2 (CO2 -EGR/EOR) • Rock Mechanical Behavior in Consideration of Dilatancy and Damage • Underground Storage of Natural Gas and Oil • Underground Storage of Wind Energy • State-of-the-Art & New Developments in Gas Supply in Germany and China • EOR & New Drilling Technology Underground Storage of CO2 and Energy will be invaluable to academics, professionals and engineers, and to industries and governmental bodies active in the field of underground storage of fossil and renewable energy sources.