Neural Networks for RF and Microwave Design

Neural Networks for RF and Microwave Design
Author: Q. J. Zhang
Publisher: Artech House Publishers
Total Pages: 396
Release: 2000
Genre: Computers
ISBN:


Download Neural Networks for RF and Microwave Design Book in PDF, Epub and Kindle

Discover the new, unconventional alternatives for conquering RF and microwave design and modeling problems using neural networks -- information processing systems that can learn, generalize, and even allow model development when component formulas are missing -- with this book and software package. It shows you the ease of creating models with neural networks, and how quick model evaluation can be done, plus other opportunities presented by neural networks for conquering the toughest RF and microwave CAD problems.

Simulation-driven Design Optimization And Modeling For Microwave Engineering

Simulation-driven Design Optimization And Modeling For Microwave Engineering
Author: Qi-jun Zhang
Publisher: World Scientific
Total Pages: 526
Release: 2013-03-14
Genre: Technology & Engineering
ISBN: 1848169221


Download Simulation-driven Design Optimization And Modeling For Microwave Engineering Book in PDF, Epub and Kindle

Computer-aided full-wave electromagnetic (EM) analysis has been used in microwave engineering for the past decade. Initially, its main application area was design verification. Today, EM-simulation-driven optimization and design closure become increasingly important due to the complexity of microwave structures and increasing demands for accuracy. In many situations, theoretical models of microwave structures can only be used to yield the initial designs that need to be further fine-tuned to meet given performance requirements. In addition, EM-based design is a must for a growing number of microwave devices such as ultra-wideband (UWB) antennas, dielectric resonator antennas and substrate-integrated circuits. For circuits like these, no design-ready theoretical models are available, so design improvement can only be obtained through geometry adjustments based on repetitive, time-consuming simulations. On the other hand, various interactions between microwave devices and their environment, such as feeding structures and housing, must be taken into account, and this is only possible through full-wave EM analysis.Electromagnetic simulations can be highly accurate, but they tend to be computationally expensive. Therefore, practical design optimization methods have to be computationally efficient, so that the number of CPU-intensive high-fidelity EM simulations is reduced as much as possible during the design process. For the same reasons, techniques for creating fast yet accurate models of microwave structures become crucially important.In this edited book, the authors strive to review the state-of-the-art simulation-driven microwave design optimization and modeling. A group of international experts specialized in various aspects of microwave computer-aided design summarize and review a wide range of the latest developments and real-world applications. Topics include conventional and surrogate-based design optimization techniques, methods exploiting adjoint sensitivity, simulation-based tuning, space mapping, and several modeling methodologies, such as artificial neural networks and kriging. Applications and case studies include microwave filters, antennas, substrate integrated structures and various active components and circuits. The book also contains a few introductory chapters highlighting the fundamentals of optimization and modeling, gradient-based and derivative-free algorithms, metaheuristics, and surrogate-based optimization techniques, as well as finite difference and finite element methods./a

Surrogate-Based Modeling and Optimization

Surrogate-Based Modeling and Optimization
Author: Slawomir Koziel
Publisher: Springer Science & Business Media
Total Pages: 413
Release: 2013-06-06
Genre: Mathematics
ISBN: 1461475511


Download Surrogate-Based Modeling and Optimization Book in PDF, Epub and Kindle

Contemporary engineering design is heavily based on computer simulations. Accurate, high-fidelity simulations are used not only for design verification but, even more importantly, to adjust parameters of the system to have it meet given performance requirements. Unfortunately, accurate simulations are often computationally very expensive with evaluation times as long as hours or even days per design, making design automation using conventional methods impractical. These and other problems can be alleviated by the development and employment of so-called surrogates that reliably represent the expensive, simulation-based model of the system or device of interest but they are much more reasonable and analytically tractable. This volume features surrogate-based modeling and optimization techniques, and their applications for solving difficult and computationally expensive engineering design problems. It begins by presenting the basic concepts and formulations of the surrogate-based modeling and optimization paradigm and then discusses relevant modeling techniques, optimization algorithms and design procedures, as well as state-of-the-art developments. The chapters are self-contained with basic concepts and formulations along with applications and examples. The book will be useful to researchers in engineering and mathematics, in particular those who employ computationally heavy simulations in their design work.

APCCAS ...

APCCAS ...
Author:
Publisher:
Total Pages: 940
Release: 2000
Genre: Electronic apparatus and appliances
ISBN:


Download APCCAS ... Book in PDF, Epub and Kindle

Microwave Systems and Applications

Microwave Systems and Applications
Author: Sotirios Goudos
Publisher: BoD – Books on Demand
Total Pages: 436
Release: 2017-01-11
Genre: Technology & Engineering
ISBN: 9535128671


Download Microwave Systems and Applications Book in PDF, Epub and Kindle

Microwave systems are key components of every modern wireless communication system. The main objective of this book was to collect as many different state-of-the-art studies as possible in order to cover in a single volume the main aspects of microwave systems and applications. This book contains 17 chapters written by acknowledged experts, researchers, academics, and microwave engineers, providing comprehensive information and covering a wide range of topics on all aspects of microwave systems and applications. This book is divided into four parts. The first part is devoted to microwave components. The second part deals with microwave ICs and innovative techniques for on-chip antenna design. The third part presents antenna design cases for microwave systems. Finally, the last part covers different applications of microwave systems.

Directions for the Next Generation of MMIC Devices and Systems

Directions for the Next Generation of MMIC Devices and Systems
Author: Nirod K. Das
Publisher: Springer Science & Business Media
Total Pages: 410
Release: 2013-11-11
Genre: Technology & Engineering
ISBN: 1489914803


Download Directions for the Next Generation of MMIC Devices and Systems Book in PDF, Epub and Kindle

Proceedings of the 1996 WRI International Symposium held in New York City, September 11-13, 1996

Advances in Electromagnetics Empowered by Artificial Intelligence and Deep Learning

Advances in Electromagnetics Empowered by Artificial Intelligence and Deep Learning
Author: Sawyer D. Campbell
Publisher: John Wiley & Sons
Total Pages: 596
Release: 2023-08-03
Genre: Technology & Engineering
ISBN: 1119853915


Download Advances in Electromagnetics Empowered by Artificial Intelligence and Deep Learning Book in PDF, Epub and Kindle

Advances in Electromagnetics Empowered by Artificial Intelligence and Deep Learning Authoritative reference on the state of the art in the field with additional coverage of important foundational concepts Advances in Electromagnetics Empowered by Artificial Intelligence and Deep Learning presents cutting-edge research advances in the rapidly growing areas in optical and RF electromagnetic device modeling, simulation, and inverse-design. The text provides a comprehensive treatment of the field on subjects ranging from fundamental theoretical principles and new technological developments to state-of-the-art device design, as well as examples encompassing a wide range of related sub-areas. The content of the book covers all-dielectric and metallodielectric optical metasurface deep learning-accelerated inverse-design, deep neural networks for inverse scattering, applications of deep learning for advanced antenna design, and other related topics. To aid in reader comprehension, each chapter contains 10-15 illustrations, including prototype photos, line graphs, and electric field plots. Contributed to by leading research groups in the field, sample topics covered in Advances in Electromagnetics Empowered by Artificial Intelligence and Deep Learning include: Optical and photonic design, including generative machine learning for photonic design and inverse design of electromagnetic systems RF and antenna design, including artificial neural networks for parametric electromagnetic modeling and optimization and analysis of uniform and non-uniform antenna arrays Inverse scattering, target classification, and other applications, including deep learning for high contrast inverse scattering of electrically large structures Advances in Electromagnetics Empowered by Artificial Intelligence and Deep Learning is a must-have resource on the topic for university faculty, graduate students, and engineers within the fields of electromagnetics, wireless communications, antenna/RF design, and photonics, as well as researchers at large defense contractors and government laboratories.

Advances in Imaging and Electron Physics

Advances in Imaging and Electron Physics
Author:
Publisher: Academic Press
Total Pages: 521
Release: 2012-11-01
Genre: Technology & Engineering
ISBN: 0123946360


Download Advances in Imaging and Electron Physics Book in PDF, Epub and Kindle

Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. Contributions from leading authorities Informs and updates on all the latest developments in the field