Optimal Control of Discrete Chaotic Systems

Optimal Control of Discrete Chaotic Systems
Author: Roman Senkerik
Publisher: LAP Lambert Academic Publishing
Total Pages: 264
Release: 2009-09
Genre:
ISBN: 9783838313658


Download Optimal Control of Discrete Chaotic Systems Book in PDF, Epub and Kindle

The problem of control of chaos has attracted the attention of researchers and engineers, and many methods have been developed since the early 1990 s. The main aim of this book is to show that evolutionary algorithms (EA) which is a powerful tool for almost any difficult and complex optimization problem can be in reality be used for the optimization of deterministic chaos control. This book aims to show how to use EA and how to properly define the cost function. It is also focused on the selection of control methods and the explanation of all possible problems which arises in such a difficult task of chaos control optimization. This book contains examples of EA implementation to methods for chaos control for the purpose of obtaining better results. This implies faster reaching of desired state and superior stabilization, which could be robust and effective means to optimize difficult practical problems. This book introduces a different approach to the challenging task of chaos control, and should assist students, academic researchers and engineers working with either nonlinear and chaotic systems, or evolutionary computation.

Controlling Chaos

Controlling Chaos
Author: Huaguang Zhang
Publisher: Springer Science & Business Media
Total Pages: 357
Release: 2009-06-18
Genre: Technology & Engineering
ISBN: 1848825234


Download Controlling Chaos Book in PDF, Epub and Kindle

Controlling Chaos achieves three goals: the suppression, synchronisation and generation of chaos, each of which is the focus of a separate part of the book. The text deals with the well-known Lorenz, Rössler and Hénon attractors and the Chua circuit and with less celebrated novel systems. Modelling of chaos is accomplished using difference equations and ordinary and time-delayed differential equations. The methods directed at controlling chaos benefit from the influence of advanced nonlinear control theory: inverse optimal control is used for stabilization; exact linearization for synchronization; and impulsive control for chaotification. Notably, a fusion of chaos and fuzzy systems theories is employed. Time-delayed systems are also studied. The results presented are general for a broad class of chaotic systems. This monograph is self-contained with introductory material providing a review of the history of chaos control and the necessary mathematical preliminaries for working with dynamical systems.

Chaos: Concepts, Control and Constructive Use

Chaos: Concepts, Control and Constructive Use
Author: Yurii Bolotin
Publisher: Springer
Total Pages: 286
Release: 2016-10-24
Genre: Science
ISBN: 3319424963


Download Chaos: Concepts, Control and Constructive Use Book in PDF, Epub and Kindle

This book offers a short and concise introduction to the many facets of chaos theory. While the study of chaotic behavior in nonlinear, dynamical systems is a well-established research field with ramifications in all areas of science, there is a lot to be learnt about how chaos can be controlled and, under appropriate conditions, can actually be constructive in the sense of becoming a control parameter for the system under investigation, stochastic resonance being a prime example. The present work stresses the latter aspects and, after recalling the paradigm changes introduced by the concept of chaos, leads the reader skillfully through the basics of chaos control by detailing the relevant algorithms for both Hamiltonian and dissipative systems, among others. The main part of the book is then devoted to the issue of synchronization in chaotic systems, an introduction to stochastic resonance, and a survey of ratchet models. In this second, revised and enlarged edition, two more chapters explore the many interfaces of quantum physics and dynamical systems, examining in turn statistical properties of energy spectra, quantum ratchets, and dynamical tunneling, among others. This text is particularly suitable for non-specialist scientists, engineers, and applied mathematical scientists from related areas, wishing to enter the field quickly and efficiently. From the reviews of the first edition: This book is an excellent introduction to the key concepts and control of chaos in (random) dynamical systems [...] The authors find an outstanding balance between main physical ideas and mathematical terminology to reach their audience in an impressive and lucid manner. This book is ideal for anybody who would like to grasp quickly the main issues related to chaos in discrete and continuous time. Henri Schurz, Zentralblatt MATH, Vol. 1178, 2010.

Fractional Order Control and Synchronization of Chaotic Systems

Fractional Order Control and Synchronization of Chaotic Systems
Author: Ahmad Taher Azar
Publisher: Springer
Total Pages: 873
Release: 2017-02-27
Genre: Technology & Engineering
ISBN: 3319502492


Download Fractional Order Control and Synchronization of Chaotic Systems Book in PDF, Epub and Kindle

The book reports on the latest advances in and applications of fractional order control and synchronization of chaotic systems, explaining the concepts involved in a clear, matter-of-fact style. It consists of 30 original contributions written by eminent scientists and active researchers in the field that address theories, methods and applications in a number of research areas related to fractional order control and synchronization of chaotic systems, such as: fractional chaotic systems, hyperchaotic systems, complex systems, fractional order discrete chaotic systems, chaos control, chaos synchronization, jerk circuits, fractional chaotic systems with hidden attractors, neural network, fuzzy logic controllers, behavioral modeling, robust and adaptive control, sliding mode control, different types of synchronization, circuit realization of chaotic systems, etc. In addition to providing readers extensive information on chaos fundamentals, fractional calculus, fractional differential equations, fractional control and stability, the book also discusses key applications of fractional order chaotic systems, as well as multidisciplinary solutions developed via control modeling. As such, it offers the perfect reference guide for graduate students, researchers and practitioners in the areas of fractional order control systems and fractional order chaotic systems.

Self-Learning Optimal Control of Nonlinear Systems

Self-Learning Optimal Control of Nonlinear Systems
Author: Qinglai Wei
Publisher: Springer
Total Pages: 242
Release: 2017-06-13
Genre: Technology & Engineering
ISBN: 981104080X


Download Self-Learning Optimal Control of Nonlinear Systems Book in PDF, Epub and Kindle

This book presents a class of novel, self-learning, optimal control schemes based on adaptive dynamic programming techniques, which quantitatively obtain the optimal control schemes of the systems. It analyzes the properties identified by the programming methods, including the convergence of the iterative value functions and the stability of the system under iterative control laws, helping to guarantee the effectiveness of the methods developed. When the system model is known, self-learning optimal control is designed on the basis of the system model; when the system model is not known, adaptive dynamic programming is implemented according to the system data, effectively making the performance of the system converge to the optimum. With various real-world examples to complement and substantiate the mathematical analysis, the book is a valuable guide for engineers, researchers, and students in control science and engineering.

Introduction to Control of Oscillations and Chaos

Introduction to Control of Oscillations and Chaos
Author: Aleksandr L?vovich Fradkov
Publisher: World Scientific
Total Pages: 410
Release: 1998
Genre: Science
ISBN: 9789810230692


Download Introduction to Control of Oscillations and Chaos Book in PDF, Epub and Kindle

This book gives an exposition of the exciting field of control of oscillatory and chaotic systems, which has numerous potential applications in mechanics, laser and chemical technologies, communications, biology and medicine, economics, ecology, etc.A novelty of the book is its systematic application of modern nonlinear and adaptive control theory to the new class of problems. The proposed control design methods are based on the concepts of Lyapunov functions, Poincare maps, speed-gradient and gradient algorithms. The conditions which ensure such control goals as an excitation or suppression of oscillations, synchronization and transformation from chaotic mode to the periodic one or vice versa, are established. The performance and robustness of control systems under disturbances and uncertainties are evaluated.The described methods and algorithms are illustrated by a number of examples, including classical models of oscillatory and chaotic systems: coupled pendula, brusselator, Lorenz, Van der Pol, Duffing, Henon and Chua systems. Practical examples from different fields of science and technology such as communications, growth of thin films, synchronization of chaotic generators based on tunnel diods, stabilization of swings in power systems, increasing predictability of business-cycles are also presented.The book includes many results on nonlinear and adaptive control published previously in Russian and therefore were not known to the West.Researchers, teachers and graduate students in the fields of electrical and mechanical engineering, physics, chemistry, biology, economics will find this book most useful. Applied mathematicians and control engineers from various fields of technology dealing with complex oscillatory systems will also benefit from it.

Control and Chaos

Control and Chaos
Author: Alistair Mees
Publisher: Springer Science & Business Media
Total Pages: 343
Release: 2012-12-06
Genre: Science
ISBN: 1461224462


Download Control and Chaos Book in PDF, Epub and Kindle

This volume contains the proceedings of the US-Australia workshop on Control and Chaos held in Honolulu, Hawaii from 29 June to 1 July, 1995. The workshop was jointly sponsored by the National Science Foundation (USA) and the Department of Industry, Science and Technology (Australia) under the US-Australia agreement. Control and Chaos-it brings back memories of the endless reruns of "Get Smart" where the good guys worked for Control and the bad guys were associated with Chaos. In keeping with current events, Control and Chaos are no longer adversaries but are now working together. In fact, bringing together workers in the two areas was the focus of the workshop. The objective of the workshop was to bring together experts in dynamical systems theory and control theory, and applications workers in both fields, to focus on the problem of controlling nonlinear and potentially chaotic systems using limited control effort. This involves finding and using orbits in nonlinear systems which can take a system from one region of state space to other regions where we wish to stabilize the system. Control is used to generate useful chaotic trajectories where they do not exist, and to identify and take advantage of useful ones where they do exist. A controller must be able to nudge a system into a proper chaotic orbit and know when to come off that orbit. Also, it must be able to identify regions of state space where feedback control will be effective.

Chaos in Discrete Dynamical Systems

Chaos in Discrete Dynamical Systems
Author: Ralph Abraham
Publisher: Springer Science & Business Media
Total Pages: 282
Release: 1997
Genre: Computers
ISBN: 9780387943008


Download Chaos in Discrete Dynamical Systems Book in PDF, Epub and Kindle

Chaos Theory is a synonym for dynamical systems theory, a branch of mathematics. Dynamical systems come in three flavors: flows (continuous dynamical systems), cascades (discrete, reversible, dynamical systems), and semi-cascades (discrete, irreversible, dynamical systems). Flows and semi-cascades are the classical systems iuntroduced by Poincare a centry ago, and are the subject of the extensively illustrated book: "Dynamics: The Geometry of Behavior," Addison-Wesley 1992 authored by Ralph Abraham and Shaw. Semi- cascades, also know as iterated function systems, are a recent innovation, and have been well-studied only in one dimension (the simplest case) since about 1950. The two-dimensional case is the current frontier of research. And from the computer graphcis of the leading researcher come astonishing views of the new landscape, such as the Julia and Mandelbrot sets in the beautiful books by Heinz-Otto Peigen and his co-workers. Now, the new theory of critical curves developed by Mira and his students and Toulouse provide a unique opportunity to explain the basic concepts of the theory of chaos and bifurcations for discete dynamical systems in two-dimensions. The materials in the book and on the accompanying disc are not solely developed only with the researcher and professional in mind, but also with consideration for the student. The book is replete with some 100 computer graphics to illustrate the material, and the CD-ROM contains full-color animations that are tied directly into the subject matter of the book, itself. In addition, much of this material has also been class-tested by the authors. The cross-platform CD also contains a software program called ENDO, which enables users to create their own 2-D imagery with X-Windows. Maple scripts are provided which give the reader the option of working directly with the code from which the graphcs in the book were