Nonlinear Finite Element Analysis of Composite and Reinforced Concrete Beams

Nonlinear Finite Element Analysis of Composite and Reinforced Concrete Beams
Author: Xiaoshan Lin
Publisher: Woodhead Publishing
Total Pages: 256
Release: 2019-10-18
Genre: Architecture
ISBN: 0128169001


Download Nonlinear Finite Element Analysis of Composite and Reinforced Concrete Beams Book in PDF, Epub and Kindle

Nonlinear Finite Element Analysis of Composite and Reinforced Concrete Beams presents advanced methods and techniques for the analysis of composite and FRP reinforced concrete beams. The title introduces detailed numerical modeling methods and the modeling of the structural behavior of composite beams, including critical interfacial bond-slip behavior. It covers a new family of composite beam elements developed by the authors. Other sections cover nonlinear finite element analysis procedures and the numerical modeling techniques used in commercial finite element software that will be of particular interest to engineers and researchers executing numerical simulations. Gives advanced methods and techniques for the analysis of composite and fiber Reinforced Plastic (FRP) and reinforced concrete beams Presents new composite beam elements developed by the authors Introduces numerical techniques for the development of effective finite element models using commercial software Discusses the critical issues encountered in structural analysis Maintains a clear focus on advanced numerical modeling

Finite Element Analysis and Design of Steel and Steel–Concrete Composite Bridges

Finite Element Analysis and Design of Steel and Steel–Concrete Composite Bridges
Author: Ehab Ellobody
Publisher: Butterworth-Heinemann
Total Pages: 683
Release: 2014-05-30
Genre: Technology & Engineering
ISBN: 0124173039


Download Finite Element Analysis and Design of Steel and Steel–Concrete Composite Bridges Book in PDF, Epub and Kindle

In recent years, bridge engineers and researchers are increasingly turning to the finite element method for the design of Steel and Steel-Concrete Composite Bridges. However, the complexity of the method has made the transition slow. Based on twenty years of experience, Finite Element Analysis and Design of Steel and Steel-Concrete Composite Bridges provides structural engineers and researchers with detailed modeling techniques for creating robust design models. The book’s seven chapters begin with an overview of the various forms of modern steel and steel–concrete composite bridges as well as current design codes. This is followed by self-contained chapters concerning: nonlinear material behavior of the bridge components, applied loads and stability of steel and steel–concrete composite bridges, and design of steel and steel–concrete composite bridge components. Constitutive models for construction materials including material non-linearity and geometric non-linearity The mechanical approach including problem setup, strain energy, external energy and potential energy), mathematics behind the method Commonly available finite elements codes for the design of steel bridges Explains how the design information from Finite Element Analysis is incorporated into Building information models to obtain quantity information, cost analysis

Rehabilitation of Concrete Structures with Fiber-Reinforced Polymer

Rehabilitation of Concrete Structures with Fiber-Reinforced Polymer
Author: Riadh Al-Mahaidi
Publisher: Butterworth-Heinemann
Total Pages: 413
Release: 2018-11-12
Genre: Technology & Engineering
ISBN: 0128115114


Download Rehabilitation of Concrete Structures with Fiber-Reinforced Polymer Book in PDF, Epub and Kindle

Rehabilitation of Concrete Structures with Fiber Reinforced Polymer is a complete guide to the use of FRP in flexural, shear and axial strengthening of concrete structures. Through worked design examples, the authors guide readers through the details of usage, including anchorage systems, different materials and methods of repairing concrete structures using these techniques. Topics include the usage of FRP in concrete structure repair, concrete structural deterioration and rehabilitation, methods of structural rehabilitation and strengthening, a review of the design basis for FRP systems, including strengthening limits, fire endurance, and environmental considerations. In addition, readers will find sections on the strengthening of members under flexural stress, including failure modes, design procedures, examples and anchorage detailing, and sections on shear and torsion stress, axial strengthening, the installation of FRP systems, and strengthening against extreme loads, such as earthquakes and fire, amongst other important topics. Presents worked design examples covering flexural, shear, and axial strengthening Includes complete coverage of FRP in Concrete Repair Explores the most recent guidelines (ACI440.2, 2017; AS5100.8, 2017 and Concrete society technical report no. 55, 2012)