Spacecraft Momentum Control Systems

Spacecraft Momentum Control Systems
Author: Frederick A. Leve
Publisher: Springer
Total Pages: 262
Release: 2015-10-17
Genre: Technology & Engineering
ISBN: 3319225634


Download Spacecraft Momentum Control Systems Book in PDF, Epub and Kindle

The goal of this book is to serve both as a practical technical reference and a resource for gaining a fuller understanding of the state of the art of spacecraft momentum control systems, specifically looking at control moment gyroscopes (CMGs). As a result, the subject matter includes theory, technology, and systems engineering. The authors combine material on system-level architecture of spacecraft that feature momentum-control systems with material about the momentum-control hardware and software. This also encompasses material on the theoretical and algorithmic approaches to the control of space vehicles with CMGs. In essence, CMGs are the attitude-control actuators that make contemporary highly agile spacecraft possible. The rise of commercial Earth imaging, the advances in privately built spacecraft (including small satellites), and the growing popularity of the subject matter in academic circles over the past decade argues that now is the time for an in-depth treatment of the topic. CMGs are augmented by reaction wheels and related algorithms for steering all such actuators, which together comprise the field of spacecraft momentum control systems. The material is presented at a level suitable for practicing engineers and those with an undergraduate degree in mechanical, electrical, and/or aerospace engineering.

Attitude Control/Momentum Management and Payload Pointing in Advanced Space Vehicles

Attitude Control/Momentum Management and Payload Pointing in Advanced Space Vehicles
Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
Total Pages: 194
Release: 2018-07-17
Genre:
ISBN: 9781722953935


Download Attitude Control/Momentum Management and Payload Pointing in Advanced Space Vehicles Book in PDF, Epub and Kindle

The design and evaluation of an attitude control/momentum management system for highly asymmetric spacecraft configurations are presented. The preliminary development and application of a nonlinear control system design methodology for tracking control of uncertain systems, such as spacecraft payload pointing systems are also presented. Control issues relevant to both linear and nonlinear rigid-body spacecraft dynamics are addressed, whereas any structural flexibilities are not taken into consideration. Results from the first task indicate that certain commonly used simplifications in the equations of motions result in unstable attitude control systems, when used for highly asymmetric spacecraft configurations. An approach is suggested circumventing this problem. Additionally, even though preliminary results from the second task are encouraging, the proposed nonlinear control system design method requires further investigation prior to its application and use as an effective payload pointing system design technique. Parlos, Alexander G. and Jayasuriya, Suhada Unspecified Center ATTITUDE CONTROL; CONTROL SYSTEMS DESIGN; MANAGEMENT SYSTEMS; MOMENTUM; POINTING CONTROL SYSTEMS; RIGID STRUCTURES; SPACECRAFT CONTROL; ASYMMETRY; EQUATIONS OF MOTION; NONLINEAR SYSTEMS; SPACECRAFT CONFIGURATIONS...

Advances in Spacecraft Attitude Control

Advances in Spacecraft Attitude Control
Author: Timothy Sands
Publisher: BoD – Books on Demand
Total Pages: 286
Release: 2020-01-15
Genre: Science
ISBN: 1789848024


Download Advances in Spacecraft Attitude Control Book in PDF, Epub and Kindle

Spacecraft attitude maneuvers comply with Euler's moment equations, a set of three nonlinear, coupled differential equations. Nonlinearities complicate the mathematical treatment of the seemingly simple action of rotating, and these complications lead to a robust lineage of research. This book is meant for basic scientifically inclined readers, and commences with a chapter on the basics of spaceflight and leverages this remediation to reveal very advanced topics to new spaceflight enthusiasts. The topics learned from reading this text will prepare students and faculties to investigate interesting spaceflight problems in an era where cube satellites have made such investigations attainable by even small universities. It is the fondest hope of the editor and authors that readers enjoy this book.

Spacecraft Attitude and Power Control Using Variable Speed Control Moment Gyros

Spacecraft Attitude and Power Control Using Variable Speed Control Moment Gyros
Author: Hyungjoo Yoon
Publisher:
Total Pages:
Release: 2004
Genre: Actuators
ISBN:


Download Spacecraft Attitude and Power Control Using Variable Speed Control Moment Gyros Book in PDF, Epub and Kindle

A Variable Speed Control Moment Gyro (VSCMG) is a recently introduced actuator for spacecraft attitude control. As its name implies, a VSCMG is essentially a single-gimbal control moment gyro (CMG) with a flywheel allowed to have variable spin speed. Thanks to its extra degrees of freedom, a VSCMGs cluster can be used to achieve additional objectives, such as power tracking and/or singularity avoidance, as well as attitude control. In this thesis, control laws for an integrated power/attitude control system (IPACS) for a satellite using VSCMGs are introduced. The power tracking objective is achieved by storing or releasing the kinetic energy in the wheels. The proposed control algorithms perform both the attitude and power tracking goals simultaneously. This thesis also provides a singularity analysis and avoidance method using CMGs/VSCMGs. This issue is studied for both the cases of attitude tracking with and without a power tracking requirement. A null motion method to avoid singularities is presented, and a criterion is developed to determine the momentum region over which this method will successfully avoid singularities. The spacecraft angular velocity and attitude control problem using a single VSCMG is also addressed. A body-fixed axis is chosen to be perpendicular to the gimbal axis, and it is controlled to aim at an arbitrarily given inertial direction, while the spacecraft angular velocity is stabilized. Finally, an adaptive control algorithm for the spacecraft attitude tracking in case when the actuator parameters, for instance the spin axis directions, are uncertain is developed. The equations of motion in this case are fully nonlinear and represent a Multi-Input-Multi-Output (MIMO) system. The smooth projection algorithm is applied to keep the parameter estimates inside a singularity-free region. The design procedure can also be easily applied to general MIMO dynamical systems.

Fundamentals of Spacecraft Attitude Determination and Control

Fundamentals of Spacecraft Attitude Determination and Control
Author: F. Landis Markley
Publisher: Springer
Total Pages: 486
Release: 2014-05-31
Genre: Technology & Engineering
ISBN: 1493908022


Download Fundamentals of Spacecraft Attitude Determination and Control Book in PDF, Epub and Kindle

This book explores topics that are central to the field of spacecraft attitude determination and control. The authors provide rigorous theoretical derivations of significant algorithms accompanied by a generous amount of qualitative discussions of the subject matter. The book documents the development of the important concepts and methods in a manner accessible to practicing engineers, graduate-level engineering students and applied mathematicians. It includes detailed examples from actual mission designs to help ease the transition from theory to practice and also provides prototype algorithms that are readily available on the author’s website. Subject matter includes both theoretical derivations and practical implementation of spacecraft attitude determination and control systems. It provides detailed derivations for attitude kinematics and dynamics and provides detailed description of the most widely used attitude parameterization, the quaternion. This title also provides a thorough treatise of attitude dynamics including Jacobian elliptical functions. It is the first known book to provide detailed derivations and explanations of state attitude determination and gives readers real-world examples from actual working spacecraft missions. The subject matter is chosen to fill the void of existing textbooks and treatises, especially in state and dynamics attitude determination. MATLAB code of all examples will be provided through an external website.