New Methods in Computational Quantum Mechanics

New Methods in Computational Quantum Mechanics
Author: Ilya Prigogine
Publisher: John Wiley & Sons
Total Pages: 812
Release: 2009-09-09
Genre: Science
ISBN: 0470142057


Download New Methods in Computational Quantum Mechanics Book in PDF, Epub and Kindle

The use of quantum chemistry for the quantitative prediction of molecular properties has long been frustrated by the technical difficulty of carrying out the needed computations. In the last decade there have been substantial advances in the formalism and computer hardware needed to carry out accurate calculations of molecular properties efficiently. These advances have been sufficient to make quantum chemical calculations a reliable tool for the quantitative interpretation of chemical phenomena and a guide to laboratory experiments. However, the success of these recent developments in computational quantum chemistry is not well known outside the community of practitioners. In order to make the larger community of chemical physicists aware of the current state of the subject, this self-contained volume of Advances in Chemical Physics surveys a number of the recent accomplishments in computational quantum chemistry. This stand-alone work presents the cutting edge of research in computational quantum mechanics. Supplemented with more than 150 illustrations, it provides evaluations of a broad range of methods, including: * Quantum Monte Carlo methods in chemistry * Monte Carlo methods for real-time path integration * The Redfield equation in condensed-phase quantum dynamics * Path-integral centroid methods in quantum statistical mechanics and dynamics * Multiconfigurational perturbation theory-applications in electronic spectroscopy * Electronic structure calculations for molecules containing transition metals * And more Contributors to New Methods in Computational Quantum Mechanics KERSTIN ANDERSSON, Department of Theoretical Chemistry, Chemical Center, Sweden DAVID M. CEPERLEY, National Center for Supercomputing Applications and Department of Physics, University of Illinois at Urbana-Champaign, Illinois MICHAEL A. COLLINS, Research School of Chemistry, Australian National University, Canberra, Australia REINHOLD EGGER, Fakultät für Physik, Universität Freiburg, Freiburg, Germany ANTHONY K. FELTS, Department of Chemistry, Columbia University, New York RICHARD A. FRIESNER, Department of Chemistry, Columbia University, New York MARKUS P. FÜLSCHER, Department of Theoretical Chemistry, Chemical Center, Sweden K. M. HO, Ames Laboratory and Department of Physics, Iowa State University, Ames, Iowa C. H. MAK, Department of Chemistry, University of Southern California, Los Angeles, California PER-ÅKE Malmqvist, Department of Theoretical Chemistry, Chemical Center, Sweden MANUELA MERCHán, Departamento de Química Física, Universitat de Valéncia, Spain LUBOS MITAS, National Center for Supercomputing Applications and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Illinois STEFANO OSS, Dipartimento di Fisica, Università di Trento and Istituto Nazionale di Fisica della Materia, Unità di Trento, Italy KRISTINE PIERLOOT, Department of Chemistry, University of Leuven, Belgium W. THOMAS POLLARD, Department of Chemistry, Columbia University, New York BJÖRN O. ROOS, Department of Theoretical Chemistry, Chemical Center, Sweden LUIS SERRANO-ANDRÉS, Department of Theoretical Chemistry, Chemical Center, Sweden PER E. M. SIEGBAHN, Department of Physics, University of Stockholm, Stockholm, Sweden WALTER THIEL, Institut für Organische Chemie, Universität Zürich, Zürich, Switzerland GREGORY A. VOTH, Department of Chemistry, University of Pennsylvania, Pennsylvania C. Z. Wang, Ames Laboratory and Department of Physi

New Methods in Computational Quantum Mechanics, Volume 93

New Methods in Computational Quantum Mechanics, Volume 93
Author: Ilya Prigogine
Publisher: Wiley-Interscience
Total Pages: 0
Release: 1997-06-02
Genre: Science
ISBN: 9780471191278


Download New Methods in Computational Quantum Mechanics, Volume 93 Book in PDF, Epub and Kindle

The use of quantum chemistry for the quantitative prediction of molecular properties has long been frustrated by the technical difficulty of carrying out the needed computations. In the last decade there have been substantial advances in the formalism and computer hardware needed to carry out accurate calculations of molecular properties efficiently. These advances have been sufficient to make quantum chemical calculations a reliable tool for the quantitative interpretation of chemical phenomena and a guide to laboratory experiments. However, the success of these recent developments is not well known outside the community of practitioners. In order to make the larger community of chemical physicists aware of the current state of the subject, this self-contained volume of Advances in Chemical Physics surveys a number of the recent accomplishments in computational quantum chemistry. Supplemented with more than 150 illustrations, this volume provides evaluations of a broad range of methods, including: Quantum Monte Carlo methods in chemistry Monte Carlo methods for real-time path integration The Redfield equation in condensed-phase quantum dynamics Multiconfigurational perturbation theory—applications in electronic spectroscopy Electronic structure calculations for molecules containing transition metals And more.

Computational Quantum Mechanics

Computational Quantum Mechanics
Author: Joshua Izaac
Publisher: Springer
Total Pages: 494
Release: 2019-02-15
Genre: Science
ISBN: 3319999303


Download Computational Quantum Mechanics Book in PDF, Epub and Kindle

Quantum mechanics undergraduate courses mostly focus on systems with known analytical solutions; the finite well, simple Harmonic, and spherical potentials. However, most problems in quantum mechanics cannot be solved analytically. This textbook introduces the numerical techniques required to tackle problems in quantum mechanics, providing numerous examples en route. No programming knowledge is required – an introduction to both Fortran and Python is included, with code examples throughout. With a hands-on approach, numerical techniques covered in this book include differentiation and integration, ordinary and differential equations, linear algebra, and the Fourier transform. By completion of this book, the reader will be armed to solve the Schrödinger equation for arbitrarily complex potentials, and for single and multi-electron systems.

Computational Quantum Mechanics for Materials Engineers

Computational Quantum Mechanics for Materials Engineers
Author: Levente Vitos
Publisher: Springer Science & Business Media
Total Pages: 237
Release: 2007-08-10
Genre: Technology & Engineering
ISBN: 1846289513


Download Computational Quantum Mechanics for Materials Engineers Book in PDF, Epub and Kindle

This is the only book to cover the most recent developments in applied quantum theory and their use in modeling materials properties. It describes new approaches to modeling disordered alloys and focuses on those approaches that combine the most efficient quantum-level theories of random alloys with the most sophisticated numerical techniques. In doing so, it establishes a theoretical insight into the electronic structure of complex materials such as stainless steels, Hume-Rothery alloys and silicates.

New Methods in Computational Quantum Mechanics, Volume 93

New Methods in Computational Quantum Mechanics, Volume 93
Author: Ilya Prigogine
Publisher: Wiley-Interscience
Total Pages: 0
Release: 1996-04-25
Genre: Science
ISBN: 9780471143215


Download New Methods in Computational Quantum Mechanics, Volume 93 Book in PDF, Epub and Kindle

The use of quantum chemistry for the quantitative prediction of molecular properties has long been frustrated by the technical difficulty of carrying out the needed computations. In the last decade there have been substantial advances in the formalism and computer hardware needed to carry out accurate calculations of molecular properties efficiently. These advances have been sufficient to make quantum chemical calculations a reliable tool for the quantitative interpretation of chemical phenomena and a guide to laboratory experiments. However, the success of these recent developments in computational quantum chemistry is not well known outside the community of practitioners. In order to make the larger community of chemical physicists aware of the current state of the subject, this self-contained volume of Advances in Chemical Physics surveys a number of the recent accomplishments in computational quantum chemistry. This stand-alone work presents the cutting edge of research in computational quantum mechanics. Supplemented with more than 150 illustrations, it provides evaluations of a broad range of methods, including: * Quantum Monte Carlo methods in chemistry * Monte Carlo methods for real-time path integration * The Redfield equation in condensed-phase quantum dynamics * Path-integral centroid methods in quantum statistical mechanics and dynamics * Multiconfigurational perturbation theory-applications in electronic spectroscopy * Electronic structure calculations for molecules containing transition metals * And more Contributors to New Methods in Computational Quantum Mechanics KERSTIN ANDERSSON, Department of Theoretical Chemistry, Chemical Center, Sweden DAVID M. CEPERLEY, National Center for Supercomputing Applications and Department of Physics, University of Illinois at Urbana-Champaign, Illinois MICHAEL A. COLLINS, Research School of Chemistry, Australian National University, Canberra, Australia REINHOLD EGGER, Fakultät für Physik, Universität Freiburg, Freiburg, Germany ANTHONY K. FELTS, Department of Chemistry, Columbia University, New York RICHARD A. FRIESNER, Department of Chemistry, Columbia University, New York MARKUS P. FÜLSCHER, Department of Theoretical Chemistry, Chemical Center, Sweden K. M. HO, Ames Laboratory and Department of Physics, Iowa State University, Ames, Iowa C. H. MAK, Department of Chemistry, University of Southern California, Los Angeles, California PER-KE Malmqvist, Department of Theoretical Chemistry, Chemical Center, Sweden MANUELA MERCHán, Departamento de Química Física, Universitat de Valéncia, Spain LUBOS MITAS, National Center for Supercomputing Applications and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Illinois STEFANO OSS, Dipartimento di Fisica, Università di Trento and Istituto Nazionale di Fisica della Materia, Unità di Trento, Italy KRISTINE PIERLOOT, Department of Chemistry, University of Leuven, Belgium W. THOMAS POLLARD, Department of Chemistry, Columbia University, New York BJÖRN O. ROOS, Department of Theoretical Chemistry, Chemical Center, Sweden LUIS SERRANO-ANDRÉS, Department of Theoretical Chemistry, Chemical Center, Sweden PER E. M. SIEGBAHN, Department of Physics, University of Stockholm, Stockholm, Sweden WALTER THIEL, Institut für Organische Chemie, Universität Zürich, Zürich, Switzerland GREGORY A. VOTH, Department of Chemistry, University of Pennsylvania, Pennsylvania C. Z. Wang, Ames Laboratory and Department of Physics, Iowa State University, Ames, Iowa

New Methods in Quantum Theory

New Methods in Quantum Theory
Author: C.A. Tsipis
Publisher: Springer
Total Pages: 572
Release: 1996-02-29
Genre: Science
ISBN:


Download New Methods in Quantum Theory Book in PDF, Epub and Kindle

Proceedings of the NATO Advanced Research Workshop, Halkidiki, Greece, May 14-19, 1995

Computational Methods In Quantum Chemistry, Volume 2: Quantum Chemistry

Computational Methods In Quantum Chemistry, Volume 2: Quantum Chemistry
Author: Myron W Evans
Publisher: World Scientific
Total Pages: 255
Release: 1996-07-04
Genre: Science
ISBN: 9814499188


Download Computational Methods In Quantum Chemistry, Volume 2: Quantum Chemistry Book in PDF, Epub and Kindle

This book provides a comprehensive account, from first principles, of the methods of numerical quantum mechanics, beginning with formulations and fundamental postulates. The development continues with that of the Hamiltonian and angular momentum operators, and with methods of approximating the solutions of the Schroedinger equation with variational and perturbation methods.Chapter 3 is a description of the Hartree-Fock self-consistent field method, which is developed systematically for atoms. The Born-Oppenheimer approximation is introduced, and the numerical methods presented one by one thereafter in a logically consistent way that should be accessible to undergraduates. These include LCAO, Hartree-Fock-SCF method for molecules, Roothaan LCAO-MO-SCF method, and electron correlation energy.Chapter 4 is devoted to the more sophisticated computational methods in quantum chemistry, with an introduction to topics that include: the zero differential overlap approximation; Huckel MO theory of conjugated molecules; Pariser-Parr-Pople MO method; extended Huckel theory; neglect of differential overlap methods; invariance in space requirements; CNDO; INDO; NDDO; MINDO; MNDO; AM1; MNDO-PM3; SAM1; SINDO1; CNDO/S; PCILO,Xα; and ab initio methods.This is followed by an introduction to Moller-Plesset perturbation theory of many electrons, and coupled perturbed Hartree Fock theory, with a description of the coupled cluster method. Finally Chapter 5 applies these methods to problems of contemporary interest.The book is designed to be a junior/senior level text in computational quantum mechanics, suitable for undergraduates and graduates in chemistry, physics, computer science, and associated disciplines.

Computational Quantum Chemistry

Computational Quantum Chemistry
Author: Joseph J W McDouall
Publisher: Royal Society of Chemistry
Total Pages: 252
Release: 2015-11-09
Genre: Science
ISBN: 1782625860


Download Computational Quantum Chemistry Book in PDF, Epub and Kindle

Computational Quantum Chemistry presents computational electronic structure theory as practised in terms of ab initio waveform methods and density functional approaches. Getting a full grasp of the field can often prove difficult, since essential topics fall outside of the scope of conventional chemistry education. This professional reference book provides a comprehensive introduction to the field. Postgraduate students and experienced researchers alike will appreciate Joseph McDouall's engaging writing style. The book is divided into five chapters, each providing a major aspect of the field. Electronic structure methods, the computation of molecular properties, methods for analysing the output from computations and the importance of relativistic effects on molecular properties are also discussed. Links to the websites of widely used software packages are provided so that the reader can gain first hand experience of using the techniques described in the book.

Handbook of Computational Quantum Chemistry

Handbook of Computational Quantum Chemistry
Author: David B. Cook
Publisher: Courier Corporation
Total Pages: 852
Release: 2005-08-02
Genre: Science
ISBN: 0486443078


Download Handbook of Computational Quantum Chemistry Book in PDF, Epub and Kindle

This comprehensive text provides upper-level undergraduates and graduate students with an accessible introduction to the implementation of quantum ideas in molecular modeling, exploring practical applications alongside theoretical explanations. Topics include the Hartree-Fock method; matrix SCF equations; implementation of the closed-shell case; introduction to molecular integrals; and much more. 1998 edition.

Computational Approaches in Physics

Computational Approaches in Physics
Author: Maria Fyta
Publisher: Morgan & Claypool Publishers
Total Pages: 166
Release: 2016-11-01
Genre: Computers
ISBN: 168174418X


Download Computational Approaches in Physics Book in PDF, Epub and Kindle

Computational Approaches in Physics reviews computational schemes which are used in the simulations of physical systems. These range from very accurate ab initio techniques up to coarse-grained and mesoscopic schemes. The choice of the method is based on the desired accuracy and computational efficiency. A bottom-up approach is used to present the various simulation methods used in Physics, starting from the lower level and the most accurate methods, up to particle-based ones. The book outlines the basic theory underlying each technique and its complexity, addresses the computational implications and issues in the implementation, as well as present representative examples. A link to the most common computational codes, commercial or open source is listed in each chapter. The strengths and deficiencies of the variety of techniques discussed in this book are presented in detail and visualization tools commonly used to make the simulation data more comprehensive are also discussed. In the end, specific techniques are used as bridges across different disciplines. To this end, examples of different systems tackled with the same methods are presented. The appendices include elements of physical theory which are prerequisites in understanding the simulation methods.