Oxford Handbook of Numerical Cognition

Oxford Handbook of Numerical Cognition
Author: Roi Kadosh
Publisher: OUP Oxford
Total Pages: 1217
Release: 2015-07-30
Genre: Psychology
ISBN: 0191036005


Download Oxford Handbook of Numerical Cognition Book in PDF, Epub and Kindle

How do we understand numbers? Do animals and babies have numerical abilities? Why do some people fail to grasp numbers, and how we can improve numerical understanding? Numbers are vital to so many areas of life: in science, economics, sports, education, and many aspects of everyday life from infancy onwards. Numerical cognition is a vibrant area that brings together scientists from different and diverse research areas (e.g., neuropsychology, cognitive psychology, developmental psychology, comparative psychology, anthropology, education, and neuroscience) using different methodological approaches (e.g., behavioral studies of healthy children and adults and of patients; electrophysiology and brain imaging studies in humans; single-cell neurophysiology in non-human primates, habituation studies in human infants and animals, and computer modeling). While the study of numerical cognition had been relatively neglected for a long time, during the last decade there has been an explosion of studies and new findings. This has resulted in an enormous advance in our understanding of the neural and cognitive mechanisms of numerical cognition. In addition, there has recently been increasing interest and concern about pupils' mathematical achievement in many countries, resulting in attempts to use research to guide mathematics instruction in schools, and to develop interventions for children with mathematical difficulties. This handbook brings together the different research areas that make up the field of numerical cognition in one comprehensive and authoritative volume. The chapters provide a broad and extensive review that is written in an accessible form for scholars and students, as well as educationalists, clinicians, and policy makers. The book covers the most important aspects of research on numerical cognition from the areas of development psychology, cognitive psychology, neuropsychology and rehabilitation, learning disabilities, human and animal cognition and neuroscience, computational modeling, education and individual differences, and philosophy. Containing more than 60 chapters by leading specialists in their fields, the Oxford Handbook of Numerical Cognition is a state-of-the-art review of the current literature.

Heterogeneity of Function in Numerical Cognition

Heterogeneity of Function in Numerical Cognition
Author: Avishai Henik
Publisher: Academic Press
Total Pages: 482
Release: 2018-05-17
Genre: Medical
ISBN: 0128115300


Download Heterogeneity of Function in Numerical Cognition Book in PDF, Epub and Kindle

Heterogeneity of Function in Numerical Cognition presents the latest updates on ongoing research and discussions regarding numerical cognition. With great individual differences in the development or function of numerical cognition at neuroanatomical, neuropsychological, behavioral, and interactional levels, these issues are important for the achievement of a comprehensive understanding of numerical cognition, hence its brain basis, development, breakdown in brain-injured individuals, and failures to master mathematical skills. These functions are essential for the proper development of numerical cognition. Provides an innovative reference on the emerging field of numerical cognition and the branches that converge on this diverse cognitive domain Includes an overview of the multiple disciplines that comprise numerical cognition Focuses on factors that influence numerical cognition, such as language, executive attention, memory and spatial processing Features an innovative organization with each section providing a general overview, developmental research, and evidence from neurocognitive studies

Heterogeneous Contributions to Numerical Cognition

Heterogeneous Contributions to Numerical Cognition
Author: Wim Fias
Publisher: Academic Press
Total Pages: 422
Release: 2021-05-28
Genre: Medical
ISBN: 0128174153


Download Heterogeneous Contributions to Numerical Cognition Book in PDF, Epub and Kindle

Arithmetic disability stems from deficits in neurodevelopment, with great individual differences in development or function of an individual at neuroanatomical, neuropsychological, behavioral, and interactional levels. Heterogeneous Contributions to Numerical Cognition: Learning and Education in Mathematical Cognition examines research in mathematical education methods and their neurodevelopmental basis, focusing on the underlying neurodevelopmental features that must be taken into account when teaching and learning mathematics. Cognitive domains and functions such as executive functions, memory, attention, and language contribute to numerical cognition and are essential for its proper development. These lines of research and thinking in neuroscience are discussed in this book to further the understanding of the neurodevelopmental and cognitive basis of more complex forms of mathematics – and how to best teach them. By unravelling the basic building blocks of numerical thinking and the developmental basis of human capacity for arithmetic, this book and the discussions within are important for the achievement of a comprehensive understanding of numerical cognition, its brain basis, development, breakdown in brain-injured individuals, and failures to master mathematical skills. A novel innovative reference on the emerging field of numerical cognition and neurodevelopment underlying mathematical education Includes an overview of the multiple disciplines that comprise numerical cognition written by world-leading researchers in the numerical cognition and neurodevelopment fields Features an innovative organization with each section providing a general overview, developmental research, neurocognitive mechanisms, and discussion about relevant studies

Numerical Development - From cognitive functions to neural underpinnings

Numerical Development - From cognitive functions to neural underpinnings
Author: Korbinian Moeller
Publisher: Frontiers Media SA
Total Pages: 282
Release: 2015-02-24
Genre: Functions
ISBN: 2889194248


Download Numerical Development - From cognitive functions to neural underpinnings Book in PDF, Epub and Kindle

Living at the beginning of the 21st century requires being numerate, because numerical abilities are not only essential for life prospects of individuals but also for economic interests of post-industrial knowledge societies. Thus, numerical development is at the core of both individual as well as societal interests. There is the notion that we are already born with a very basic ability to deal with small numerosities. Yet, this often called “number sense” seems to be very restricted, approximate, and driven by perceptual constraints. During our numerical development in formal (e.g., school) but also informal contexts (e.g., family, street) we acquire culturally developed abstract symbol systems to represent exact numerosities – in particular number words and Arabic digits – refining our numerical capabilities. In recent years, numerical development has gained increasing research interest documented in a growing number of behavioural, neuro-scientific, educational, cross-cultural, and neuropsychological studies addressing this issue. Additionally, our understanding of how numerical competencies develop has also benefitted considerably from the advent of different neuro-imaging techniques allowing for an evaluation of developmental changes in the human brain. In sum, we are now starting to put together a more and more coherent picture of how numerical competencies develop and how this development is associated with neural changes as well. In the end, this knowledge might also lead to a better understanding of the reasons for atypical numerical development which often has grieve consequences for those who suffer from developmental dyscalculia or mathematics learning disabilities. Therefore, this Research Topic deals with all aspects of numerical development: findings from behavioural performance to underlying neural substrates, from cross-sectional to longitudinal evaluations, from healthy to clinical populations. To this end, we included empirical contributions using different experimental methodologies, but also theoretical contributions, review articles, or opinion papers.

Continuous Issues in Numerical Cognition

Continuous Issues in Numerical Cognition
Author: Avishai Henik
Publisher: Academic Press
Total Pages: 458
Release: 2016-05-18
Genre: Psychology
ISBN: 0128017937


Download Continuous Issues in Numerical Cognition Book in PDF, Epub and Kindle

Continuous Issues in Numerical Cognition: How Many or How Much re-examines the widely accepted view that there exists a core numerical system within human beings and an innate ability to perceive and count discrete quantities. This core knowledge involves the brain’s intraparietal sulcus, and a deficiency in this region has traditionally been thought to be the basis for arithmetic disability. However, new research findings suggest this wide agreement needs to be examined carefully and that perception of sizes and other non-countable amounts may be the true precursors of numerical ability. This cutting-edge book examines the possibility that perception and evaluation of non-countable dimensions may be involved in the development of numerical cognition. Discussions of the above and related issues are important for the achievement of a comprehensive understanding of numerical cognition, its brain basis, development, breakdown in brain-injured individuals, and failures to master mathematical skills. Serves as an innovative reference on the emerging field of numerical cognition and the branches that converge on this diverse topic Features chapters from leading researchers in the field Includes an overview of the multiple disciplines that comprise numerical cognition and discusses the measures that can be used in analysis Introduces novel ideas that connect non-countable continuous variables to numerical cognition

Evolutionary Origins and Early Development of Number Processing

Evolutionary Origins and Early Development of Number Processing
Author: David C. Geary
Publisher: Academic Press
Total Pages: 401
Release: 2014-11-04
Genre: Psychology
ISBN: 0128008881


Download Evolutionary Origins and Early Development of Number Processing Book in PDF, Epub and Kindle

The first volume in this ground-breaking series focuses on the origins and early development of numerical cognition in non-human primates, lower vertebrates, human infants, and preschool children. The text will help readers understand the nature and complexity of these foundational quantitative concepts and skills along with evolutionary precursors and early developmental trajectories. Brings together and focuses the efforts and research of multiple disciplines working in math cognition. The contributors bring vast knowledge and experience to bear on resolving extant substantive and methodological challenges to help advance the field of basic number processing. Introductory sections and summaries will be included to provide background for non-specialist readers.

Oxford Handbook of Numerical Cognition

Oxford Handbook of Numerical Cognition
Author: Roi Cohen Kadosh
Publisher: Oxford University Press
Total Pages: 1515
Release: 2015-07-30
Genre: Psychology
ISBN: 0191036013


Download Oxford Handbook of Numerical Cognition Book in PDF, Epub and Kindle

How do we understand numbers? Do animals and babies have numerical abilities? Why do some people fail to grasp numbers, and how we can improve numerical understanding? Numbers are vital to so many areas of life: in science, economics, sports, education, and many aspects of everyday life from infancy onwards. Numerical cognition is a vibrant area that brings together scientists from different and diverse research areas (e.g., neuropsychology, cognitive psychology, developmental psychology, comparative psychology, anthropology, education, and neuroscience) using different methodological approaches (e.g., behavioral studies of healthy children and adults and of patients; electrophysiology and brain imaging studies in humans; single-cell neurophysiology in non-human primates, habituation studies in human infants and animals, and computer modeling). While the study of numerical cognition had been relatively neglected for a long time, during the last decade there has been an explosion of studies and new findings. This has resulted in an enormous advance in our understanding of the neural and cognitive mechanisms of numerical cognition. In addition, there has recently been increasing interest and concern about pupils' mathematical achievement in many countries, resulting in attempts to use research to guide mathematics instruction in schools, and to develop interventions for children with mathematical difficulties. This handbook brings together the different research areas that make up the field of numerical cognition in one comprehensive and authoritative volume. The chapters provide a broad and extensive review that is written in an accessible form for scholars and students, as well as educationalists, clinicians, and policy makers. The book covers the most important aspects of research on numerical cognition from the areas of development psychology, cognitive psychology, neuropsychology and rehabilitation, learning disabilities, human and animal cognition and neuroscience, computational modeling, education and individual differences, and philosophy. Containing more than 60 chapters by leading specialists in their fields, the Oxford Handbook of Numerical Cognition is a state-of-the-art review of the current literature.

How to Build a Brain

How to Build a Brain
Author: Chris Eliasmith
Publisher: Oxford University Press
Total Pages: 475
Release: 2013-04-16
Genre: Psychology
ISBN: 0199794693


Download How to Build a Brain Book in PDF, Epub and Kindle

How to Build a Brain provides a detailed exploration of a new cognitive architecture - the Semantic Pointer Architecture - that takes biological detail seriously, while addressing cognitive phenomena. Topics ranging from semantics and syntax, to neural coding and spike-timing-dependent plasticity are integrated to develop the world's largest functional brain model.