Nanomaterials via Single-Source Precursors

Nanomaterials via Single-Source Precursors
Author: Allen W. Apblett
Publisher: Elsevier
Total Pages: 630
Release: 2022-02-19
Genre: Technology & Engineering
ISBN: 0128203447


Download Nanomaterials via Single-Source Precursors Book in PDF, Epub and Kindle

Nanomaterials via Single-Source Precursors: Synthesis, Processing and Applications presents recent results and overviews of synthesis, processing, characterization and applications of advanced materials for energy, electronics, biomedicine, sensors and aerospace. A variety of processing methods (vapor, liquid and solid-state) are covered, along with materials, including metals, oxides, semiconductor, sulfides, selenides, nitrides, and carbon-based materials. Production of quantum dots, nanoparticles, thin films and composites are described by a collection of international experts. Given the ability to customize the phase, morphology, and properties of target materials, this “rational approach to synthesis and processing is a disruptive technology for electronic, energy, structural and biomedical (nano)materials and devices. The use of single-source chemical precursors for materials processing technology allows for intimate elemental mixing and hence production of complex materials at temperatures well below traditional physical methods and those involving direct combination of elements. The use of lower temperatures enables thin-film deposition on lightweight polymer substrates and reduces damage to complex devices structures such as used in power, electronics and sensors. Discusses new approaches to synthesis or single-source precursors (SSPs) and the concept of rational design of materials Includes materials processing of SSPs in the design of new materials and novel devices Provides comprehensive coverage of the subject (materials science and chemistry) as related to SSPs and the range of potential applications

Photovoltaics Beyond Silicon

Photovoltaics Beyond Silicon
Author: Senthilarasu Sundaram
Publisher: Elsevier
Total Pages: 819
Release: 2024-06-28
Genre: Technology & Engineering
ISBN: 0323901891


Download Photovoltaics Beyond Silicon Book in PDF, Epub and Kindle

Photovoltaics Beyond Silicon: Innovative Materials, Sustainable Processing Technologies, and Novel Device Structures presents the latest innovations in materials, processing and devices to produce electricity via advanced, sustainable photovoltaics technologies. The book provides an overview of the novel materials and device architectures that have been developed to optimize energy conversion efficiencies and minimize environmental impacts. Advances in technologies for harnessing solar energy are extensively discussed, with topics including materials processing, device fabrication, sustainability of materials and manufacturing, and the current state-of-the-art. Contributions from leading international experts discuss the applications, challenges and future prospects of research in this increasingly vital field, providing a valuable resource for students and researchers working in this area. Presents a comprehensive overview and detailed discussion of solar energy technology options for sustainable energy conversion Provides an understanding of the environmental challenges to be overcome and discusses the importance of efficient materials utilization for clean energy Looks at how to design materials processing and optimize device fabrication, including metrics such as power-to-weight ratio, effectiveness at EOL compared to BOL, life-cycle analysis

Nickel and Cobalt Sulfide Nanomaterials for Magnetic and Energy Applications

Nickel and Cobalt Sulfide Nanomaterials for Magnetic and Energy Applications
Author: Charles Gervas
Publisher: GRIN Verlag
Total Pages: 188
Release: 2022-05-06
Genre: Technology & Engineering
ISBN: 3346639975


Download Nickel and Cobalt Sulfide Nanomaterials for Magnetic and Energy Applications Book in PDF, Epub and Kindle

Doctoral Thesis / Dissertation from the year 2022 in the subject Chemistry - Materials Chemistry, , course: CHEMISTRY, language: English, abstract: This thesis reports the symthesis of five metal complexes, namely bis(piperidinylldithiocarbamato)nickel(II) (1), bis(tetrahydroquinolinyldithiocarbamato)nickel(II) (2), bis(N’-ethyl-N-piperazinyldithiocarbamato)nickel(II) (3), tris(morpholinodithiocarbamato)cobalt(III) (4) and tris(N’-ethyl-N-piperazinyldithiocarbamato)cobalt(III) (5). These heterocyclic dithiocarbamate complexes have been characterised using common techniques such as Fourier Transform Infrared spectroscopy, elemental analysis and nuclear magnetic resonance spectroscopy. Nuclear magnetic resonance spectroscopy measurements were not conducted for complexes, due to their paramagnetic behaviour which adversely interferes with the technique. Single-crystal X-ray diffraction was used instead, which aided in the accurate elucidation of novel chemical structures of the complexes. Three complexes were characterised using the technique; the chemical structures of the rest are already known in literature. Generally, dithiocarbamate complexes have been identified as compounds of technological importance, particularly as single-source molecular precursors for the fabrication of nanomaterials for widespread applications. However, interest has mainly been on alkyl derivatives. Thus, this thesis focuses on the use of heterocyclic dithiocarbamates complexes as single-source molecular precursors for the fabrication of the corresponding metal sulfide thin films and nanoparticles through thermal decomposition routes. Thermal decomposition of the complexes (1)-(5) produced Ni-S, Co-S and Ni-Co-S nanoparticles and thin films which exhibited interesting morphological and optoelectronic properties. The above-mentioned systems were particularly chosen for their increased interest in magnetism, as well as energy generation and storage applications. In this thesis, the nature of the complexes and other reaction parameters were demonstrated to have an influence on the particle size, morphology, and phase purity of the nanoparticles and thin films produced. These properties have a profound impact on the efficiency of the nanoparticles and thin films, towards specific applications.

Nanoscience

Nanoscience
Author: Neerish Revaprasadu
Publisher: Royal Society of Chemistry
Total Pages: 188
Release: 2020-05-20
Genre: Technology & Engineering
ISBN: 1788017056


Download Nanoscience Book in PDF, Epub and Kindle

The field of nanoscience continues to grow and, with such a vast landscape of material, careful distillation of the most important discoveries will help researchers find the key information they require. Nanoscience provides a critical and comprehensive assessment of the most recent research and opinion from across the globe. Topics covered in this volume include metal halide perovskite nanomaterials, properties and applications, nanoparticles and nanocomposites for new permanent magnets and graphene-based materials for energy conversion applications. Anyone practising in any nano-allied field, or wishing to enter the nano-world will benefit from this resource, presenting the current thought and applications of nanoscience.

Ternary Quantum Dots

Ternary Quantum Dots
Author: Oluwatobi Samuel Oluwafemi
Publisher: Woodhead Publishing
Total Pages: 282
Release: 2021-07-02
Genre: Technology & Engineering
ISBN: 0128183047


Download Ternary Quantum Dots Book in PDF, Epub and Kindle

Ternary Quantum Dots: Synthesis, Properties, and Applications reviews the latest advances in ternary (I-III-VI) chalcopyrite quantum dots (QDs), along with their synthesis, properties and applications. Sections address the fundamental key concepts of ternary quantum dots, progress in synthesis strategies (i.e., organic and aqueous synthesis), and characterization methods (i.e., transmission electron microscopy, dynamic light scattering, etc.). Properties of ternary quantum dots are comprehensively reviewed, including optical, chemical and physical properties. The factors and mechanisms of the cytotoxicity of ternary quantum dot-based nanomaterials are also described. Since ternary chalcopyrite quantum dots are less toxic and more environmentally benign than conventional binary II-VI chalcogenide quantum dots, they are being investigated to replace conventional quantum dots in a range of applications. Thus, this book reviews QDs in various applications, such as solar cells, photocatalytic, sensors and bio-applications. Reviews fundamental concepts of ternary quantum dots and quantum dot-nanocomposites including the most relevant synthesis strategies, key properties, and characterization techniques Delves into the cytotoxicity of quantum dots looking at the factors and mechanisms that influence cytotoxicity including demonstration of cytotoxicity assays for in vitro and in vivo tests Touches on the many applications of ternary quantum dots including biomedical applications, applications in solar cells, sensing applications, and photocatalytic applications

Chalcogenide-Based Nanomaterials as Photocatalysts

Chalcogenide-Based Nanomaterials as Photocatalysts
Author: Mohammad Mansoob Khan
Publisher: Elsevier
Total Pages: 378
Release: 2021-04-07
Genre: Technology & Engineering
ISBN: 0128209178


Download Chalcogenide-Based Nanomaterials as Photocatalysts Book in PDF, Epub and Kindle

Chalcogenide-Based Nanomaterials as Photocatalysts deals with the different types of chalcogenide-based photocatalytic reactions, covering the fundamental concepts of photocatalytic reactions involving chalcogenides for a range of energy and environmental applications. Sections focus on nanostructure control, synthesis methods, activity enhancement strategies, environmental applications, and perspectives of chalcogenide-based nanomaterials. The book offers guidelines for designing new chalcogenide-based nanoscale photocatalysts at low cost and high efficiency for efficient utilization of solar energy in the areas of energy production and environment remediation. Provides information on the development of novel chalcogenide-based nanomaterials Outlines the fundamentals of chalcogenides-based photocatalysis Includes techniques for heterogeneous catalysis based on chalcogenide-based nanomaterials

Nanostructures And Nanomaterials: Synthesis, Properties, And Applications (2nd Edition)

Nanostructures And Nanomaterials: Synthesis, Properties, And Applications (2nd Edition)
Author: Guozhong Cao
Publisher: World Scientific Publishing Company
Total Pages: 596
Release: 2011-01-03
Genre: Science
ISBN: 981310077X


Download Nanostructures And Nanomaterials: Synthesis, Properties, And Applications (2nd Edition) Book in PDF, Epub and Kindle

This is the 2nd edition of the original “Nanostructures and Nanomaterials” written by Guozhong Cao and published by Imperial College Press in 2004.This important book focuses not only on the synthesis and fabrication of nanostructures and nanomaterials, but also includes properties and applications of nanostructures and nanomaterials, particularly inorganic nanomaterials. It provides balanced and comprehensive coverage of the fundamentals and processing techniques with regard to synthesis, characterization, properties, and applications of nanostructures and nanomaterials. Both chemical processing and lithographic techniques are presented in a systematic and coherent manner for the synthesis and fabrication of 0-D, 1-D, and 2-D nanostructures, as well as special nanomaterials such as carbon nanotubes and ordered mesoporous oxides. The book will serve as a general introduction to nanomaterials and nanotechnology for teaching and self-study purposes.

Carbon-based Nanomaterials in Analytical Chemistry

Carbon-based Nanomaterials in Analytical Chemistry
Author: Carlos D Garcia
Publisher: Royal Society of Chemistry
Total Pages: 256
Release: 2018-09-07
Genre: Science
ISBN: 1788015339


Download Carbon-based Nanomaterials in Analytical Chemistry Book in PDF, Epub and Kindle

Presenting the most relevant advances for employing carbon-based nanostructured materials for analytical purposes, this book serves as a reference manual that guides readers through the possibilities and helps when selecting the most appropriate material for targeted analytical applications. It critically discusses the role these nanomaterials can play in sample preparation, separation procedures and detection limit improvements whilst also considering the future trends in this field. Useful to direct initiatives, this book fills a gap in the literature for graduate students and professional researchers discussing the advantages and limitations across analytical chemistry in industry and academia.