Multiscale Modeling and Simulation of the Mechanical Behavior of the Dual Phase Steels

Multiscale Modeling and Simulation of the Mechanical Behavior of the Dual Phase Steels
Author: Tarek Belgasam
Publisher:
Total Pages: 186
Release: 2017
Genre:
ISBN:


Download Multiscale Modeling and Simulation of the Mechanical Behavior of the Dual Phase Steels Book in PDF, Epub and Kindle

The goal of this thesis is to investigate the relationship between microstructure properties and mechanical properties of dual phase (DP) steels to design advanced materials for automotive applications. In this research, a new effective analytical methodology that studies the influences and interactions of microstructure properties on the mechanical behavior of DP steels under different strain rates was developed. In this work, the plastic deformation of multiphase material with different microstructures including volume fraction and grain size of phases, and carbon content in DP steels etc., under different strain rates was investigated.

Modelling of Plasticity and Fracture Behaviors of Dual-phase Steel

Modelling of Plasticity and Fracture Behaviors of Dual-phase Steel
Author: Yuliang Hou
Publisher:
Total Pages: 0
Release: 2016
Genre:
ISBN:


Download Modelling of Plasticity and Fracture Behaviors of Dual-phase Steel Book in PDF, Epub and Kindle

Dual-phase (DP) steel has been developed by automotive industry for the purpose of weight reduction, improvement in safety performance and fuel efficiency. Usually, DP steel contains hard martensite islands embedded in a soft ferrite matrix. Synergy between these two phases with the inhomogeneous microstructure exhibits excellent mechanical properties. The mechanical properties (plasticity and damage behaviors) of DP steel are mostly derived from its microstructure, e.g., volume fraction, size, distribution and morphology of each constituent phase. Micromechanical approaches are vastly applied to predict plasticity and other mechanical properties of DP steel under various loading scenarios. In this work, micromechanical modelling of DP steel has been performed using real or artificial microstructures. A real microstructure is obtained from metallographic image, while an artificial microstructure generator with an enhanced phase assignment algorithm based on material topology optimization is proposed to investigate the mechanical properties. In this artificial generator, phase assignment process is performed on a modified Voronoï tessellation to achieve the tailored representative volume element (RVE) with a good convergence. The proposed method also includes a proper orthogonal decomposition (POD) reduction of flow curves (snapshots), which are computed using the asymptotic extension homogenization (AEH) scheme, to identify the optimal controlling parameters for DP steel. This numerical method is verified using DP590 and DP980 steels that indicate a good agreement with the flow stress from measurements and RVE prediction based on real microstructures. Predictions of plastic strain patterns including shear bands using the artificial microstructure closely resemble the actual mechanical behavior under similar loading conditions. Moreover, an interpolation has been adopted to obtain a correlation between these controlling parameters based on the identification for various DP steels. Additionally, a bi-level reduced surrogate model is developed and presented to identify the material parameters of the Mohr-Coulomb (MMC) fracture criterion. Using this method, the identification process becomes feasible with a limited number of experimental tests. The method combines local critical elements associated with global models. The surrogate model of fracture strain constructed using the diffuse approximation and the local elements, reduced the computational cost for searching material parameters. Global fracture simulations are performed to update the target fracture strain and to compute the corresponding failure onset displacement. Convincing results are obtained via successive application of design of experiment (DOE) and enhanced design space transformation algorithms. The proposed identification protocol is validated with DP590 steel. Robustness of the method is confirmed with different initial values. These numerical investigations provide new direction for multiscale simulations of the plasticity and damage behaviors of DP steel. Moreover, they efficiently contribute to bridge the gap between scientific research and engineering application of heterogeneous materials.

Multi-scale Invertigation of the Relationship Between the Microstructure and Mechanical Properties in Dual Phase Steels

Multi-scale Invertigation of the Relationship Between the Microstructure and Mechanical Properties in Dual Phase Steels
Author: Fan Zhang
Publisher:
Total Pages: 150
Release: 2016
Genre:
ISBN:


Download Multi-scale Invertigation of the Relationship Between the Microstructure and Mechanical Properties in Dual Phase Steels Book in PDF, Epub and Kindle

Dual phase steel alloys belong to the first generation of advanced high strength steels that are widely used in the automotive industry to form body structure and closure panels of vehicles. A deeper understanding of the microstructural features, such as phase orientation and morphology are needed in order to establish their effect on the mechanical performance and to design a material with optimized attributes.

Multiscale Materials Modeling

Multiscale Materials Modeling
Author: Siegfried Schmauder
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 409
Release: 2016-08-22
Genre: Science
ISBN: 3110412519


Download Multiscale Materials Modeling Book in PDF, Epub and Kindle

This book presents current spatial and temporal multiscaling approaches of materials modeling. Recent results demonstrate the deduction of macroscopic properties at the device and component level by simulating structures and materials sequentially on atomic, micro- and mesostructural scales. The book covers precipitation strengthening and fracture processes in metallic alloys, materials that exhibit ferroelectric and magnetoelectric properties as well as biological, metal-ceramic and polymer composites. The progress which has been achieved documents the current state of art in multiscale materials modelling (MMM) on the route to full multi-scaling. Contents: Part I: Multi-time-scale and multi-length-scale simulations of precipitation and strengthening effects Linking nanoscale and macroscale Multiscale simulations on the coarsening of Cu-rich precipitates in α-Fe using kinetic Monte Carlo, Molecular Dynamics, and Phase-Field simulations Multiscale modeling predictions of age hardening curves in Al-Cu alloys Kinetic Monte Carlo modeling of shear-coupled motion of grain boundaries Product Properties of a two-phase magneto-electric composite Part II: Multiscale simulations of plastic deformation and fracture Niobium/alumina bicrystal interface fracture Atomistically informed crystal plasticity model for body-centred cubic iron FE2AT ・ finite element informed atomistic simulations Multiscale fatigue crack growth modeling for welded stiffened panels Molecular dynamics study on low temperature brittleness in tungsten single crystals Multi scale cellular automata and finite element based model for cold deformation and annealing of a ferritic-pearlitic microstructure Multiscale simulation of the mechanical behavior of nanoparticle-modified polyamide composites Part III: Multiscale simulations of biological and bio-inspired materials, bio-sensors and composites Multiscale Modeling of Nano-Biosensors Finite strain compressive behaviour of CNT/epoxy nanocomposites Peptide・zinc oxide interaction

Proceedings of the 14th International Conference on the Technology of Plasticity - Current Trends in the Technology of Plasticity

Proceedings of the 14th International Conference on the Technology of Plasticity - Current Trends in the Technology of Plasticity
Author: Katia Mocellin
Publisher: Springer Nature
Total Pages: 788
Release: 2023-09-19
Genre: Technology & Engineering
ISBN: 3031420934


Download Proceedings of the 14th International Conference on the Technology of Plasticity - Current Trends in the Technology of Plasticity Book in PDF, Epub and Kindle

This volume highlights the latest advances, innovations, and applications in the field of metal forming, as presented by leading international researchers and engineers at the 14th International Conference on Technology of Plasticity (ICTP), held in Mandelieu-La Napoule, France on September 24-29, 2023. It covers a diverse range of topics such as manufacturing processes & equipment, materials behavior and characterization, microstructure design by forming, surfaces & interfaces, control & optimization, green / sustainable metal forming technologies, digitalization & AI in metal forming, multi-material processing, agile / flexible metal forming processes, forming of non-metallic materials, micro-forming and luxury applications. The contributions, which were selected by means of a rigorous international peer-review process, present a wealth of exciting ideas that will open novel research directions and foster multidisciplinary collaboration among different specialists.

Work-hardening of dual-phase steel

Work-hardening of dual-phase steel
Author: Rieger, Florian
Publisher: KIT Scientific Publishing
Total Pages: 202
Release: 2016-07-01
Genre: Technology (General)
ISBN: 3731505134


Download Work-hardening of dual-phase steel Book in PDF, Epub and Kindle

Dual-phase steels exhibit good mechanical properties due to a microstructure of strong martensitic inclusions embedded in a ductile ferritic matrix. This work presents a two-scale model for the underlying work-hardening effects; such as the distinctly different hardening rates observed for high-strength dual-phase steels. The model is based on geometrically necessary dislocations and comprises the average microstructural morphology as well as a direct interaction between the constituents.

Multiphysics and Multiscale Modeling

Multiphysics and Multiscale Modeling
Author: Young W. Kwon
Publisher: CRC Press
Total Pages: 442
Release: 2015-10-05
Genre: Science
ISBN: 1498782523


Download Multiphysics and Multiscale Modeling Book in PDF, Epub and Kindle

Written to appeal to a wide field of engineers and scientists who work on multiscale and multiphysics analysis, Multiphysics and Multiscale Modeling: Techniques and Applications is dedicated to the many computational techniques and methods used to develop man-made systems as well as understand living systems that exist in nature. Presenting a body

Software for Exascale Computing - SPPEXA 2016-2019

Software for Exascale Computing - SPPEXA 2016-2019
Author: Hans-Joachim Bungartz
Publisher: Springer Nature
Total Pages: 624
Release: 2020-07-30
Genre: Computers
ISBN: 3030479560


Download Software for Exascale Computing - SPPEXA 2016-2019 Book in PDF, Epub and Kindle

This open access book summarizes the research done and results obtained in the second funding phase of the Priority Program 1648 "Software for Exascale Computing" (SPPEXA) of the German Research Foundation (DFG) presented at the SPPEXA Symposium in Dresden during October 21-23, 2019. In that respect, it both represents a continuation of Vol. 113 in Springer’s series Lecture Notes in Computational Science and Engineering, the corresponding report of SPPEXA’s first funding phase, and provides an overview of SPPEXA’s contributions towards exascale computing in today's sumpercomputer technology. The individual chapters address one or more of the research directions (1) computational algorithms, (2) system software, (3) application software, (4) data management and exploration, (5) programming, and (6) software tools. The book has an interdisciplinary appeal: scholars from computational sub-fields in computer science, mathematics, physics, or engineering will find it of particular interest.