Modeling of Scalar Probability Density Functions in Turbulent Flows

Modeling of Scalar Probability Density Functions in Turbulent Flows
Author: Ashok Kumara Varma
Publisher:
Total Pages: 54
Release: 1978
Genre: Combustion
ISBN:


Download Modeling of Scalar Probability Density Functions in Turbulent Flows Book in PDF, Epub and Kindle

Turbulent flows involving chemical reactions are a basic feature of many combustion and propulsion systems. The development of calculation procedures for turbulent reacting flows requires the understanding and modeling of the coupling between turbulence and combustion. Second-order closure modeling of turbulent flows provides a convenient framework for studying these interactions between turbulence and chemical reactions. Models for the scalar probability density function (pdf) have to be developed to achieve closure of turbulent transport equations for mixing and reacting flows. A delta function 'typical eddy' model has been developed for the joint pdf of the scalar variables. It has been demonstrated that delta functions are a necessary part of pdf's in order to attain the extremums of the statistical constraints on the moments. The statistical bounds on a number of moments of interest have been derived. It has been proven that a rational pdf composed of a set of delta functions alone can always be constructed at any point within the statistically valid moment space. The model provides a good representation of actual pdf's in two-species, variable-density mixing flows. The model has been directly compared to experimental pdf measurements and good agreement for higher-order moments has been demonstrated. It can be shown that the delta function pdf model is significantly simpler than other proposed pdf models and is more than adequate for the closure of the transport equations. (Author).

Second-Order Closure Modeling of Variable Density Turbulent Flows

Second-Order Closure Modeling of Variable Density Turbulent Flows
Author: Ashok Kumara Varmer
Publisher:
Total Pages: 37
Release: 1979
Genre: Combustion gases
ISBN:


Download Second-Order Closure Modeling of Variable Density Turbulent Flows Book in PDF, Epub and Kindle

Mixing and Chemical reactions under turbulent flow conditions are a basic feature of the energy release processes in many combustion and propulsion systems. The development of predictive calculation procedures for these systems requires the understanding and modeling of coupling between turbulence and various physical and chemical processes. Second-order closure modeling of turbulent flows provides a rational framework for studying these interactions. Models for the scalar probability density function (pdf) have to be developed to achieve closure of turbulent transport equations for mixing and reacting flows. A delta function 'typical eddy' pdf model for two species flows has been developed and incorporated into a complete second-order closure computer program. The program has been used to study uniform and variable density flowfields and the model predictions have been compared to experimental measurements. The modeling of turbulence dynamics for variable density flows requires further improvement. However, the importance of modeling the higher-order scalar correlations has been demonstrated. A number of statistical constraints on three species flowfields have also been derived. These will be useful in the development of the 'typical eddy' pdf modelfor reacting flows. (Author).

The Statistical Dynamics of Turbulence

The Statistical Dynamics of Turbulence
Author: Jovan Jovanovic
Publisher: Springer Science & Business Media
Total Pages: 156
Release: 2004-02-09
Genre: Computers
ISBN: 9783540203360


Download The Statistical Dynamics of Turbulence Book in PDF, Epub and Kindle

This short but complicated book is very demanding of any reader. The scope and style employed preserve the nature of its subject: the turbulence phe nomena in gas and liquid flows which are believed to occur at sufficiently high Reynolds numbers. Since at first glance the field of interest is chaotic, time-dependent and three-dimensional, spread over a wide range of scales, sta tistical treatment is convenient rather than a description of fine details which are not of importance in the first place. When coupled to the basic conserva tion laws of fluid flow, such treatment, however, leads to an unclosed system of equations: a consequence termed, in the scientific community, the closure problem. This is the central and still unresolved issue of turbulence which emphasizes its chief peculiarity: our inability to do reliable predictions even on the global flow behavior. The book attempts to cope with this difficult task by introducing promising mathematical tools which permit an insight into the basic mechanisms involved. The prime objective is to shed enough light, but not necessarily the entire truth, on the turbulence closure problem. For many applications it is sufficient to know the direction in which to go and what to do in order to arrive at a fast and practical solution at minimum cost. The book is not written for easy and attractive reading.

PDF Modeling of Turbulent Flows on Unstructured Grids

PDF Modeling of Turbulent Flows on Unstructured Grids
Author: József Bakosi
Publisher:
Total Pages: 0
Release: 2008
Genre: Turbulence
ISBN:


Download PDF Modeling of Turbulent Flows on Unstructured Grids Book in PDF, Epub and Kindle

In probability density function (PDF) methods of turbulent flows, the joint PDF of several flow variables is computed by numerically integrating a system of stochastic differential equations for Lagrangian particles. Because the technique solves a transport equation for the PDF of the velocity and scalars, a mathematically exact treatment of advection, viscous effects and arbitrarily complex chemical reactions is possible; these processes are treated without closure assumptions. A set of algorithms is proposed to provide an efficient solution of the PDF transport equation modeling the joint PDF of turbulent velocity, frequency and concentration of a passive scalar in geometrically complex configurations. An unstructured Eulerian grid is employed to extract Eulerian statistics, to solve for quantities represented at fixed locations of the domain and to track particles. All three aspects regarding the grid make use of the finite element method. Compared to hybrid methods, the current methodology is stand-alone, therefore it is consistent both numerically and at the level of turbulence closure without the use of consistency conditions. Since both the turbulent velocity and scalar concentration fields are represented in a stochastic way, the method allows for a direct and close interaction between these fields, which is beneficial in computing accurate scalar statistics. Boundary conditions implemented along solid bodies are of the free-slip and no-slip type without the need for ghost elements. Boundary layers at no-slip boundaries are either fully resolved down to the viscous sublayer, explicitly modeling the high anisotropy and inhomogeneity of the low-Reynolds-number wall region without damping or wall-functions or specified via logarithmic wall-functions. As in moment closures and large eddy simulation, these wall-treatments provide the usual trade-off between resolution and computational cost as required by the given application. Particular attention is focused on modeling the dispersion of passive scalars in inhomogeneous turbulent flows. Two different micromixing models are investigated that incorporate the effect of small scale mixing on the transported scalar: the widely used interaction by exchange with the mean and the interaction by exchange with the conditional mean model. An adaptive algorithm to compute the velocity-conditioned scalar mean is proposed that homogenizes the statistical error over the sample space with no assumption on the shape of the underlying velocity PDF. The development also concentrates on a generally applicable micromixing timescale for complex flow domains. Several newly developed algorithms are described in detail that facilitate a stable numerical solution in arbitrarily complex flow geometries, including a stabilized mean-pressure projection scheme, the estimation of conditional and unconditional Eulerian statistics and their derivatives from stochastic particle fields employing finite element shapefunctions, particle tracking through unstructured grids, an efficient particle redistribution procedure and techniques related to efficient random number generation. The algorithm is validated and tested by computing three different turbulent flows: the fully developed turbulent channel flow, a street canyon (or cavity) flow and the turbulent wake behind a circular cylinder at a sub-critical Reynolds number. The solver has been parallelized and optimized for shared memory and multi-core architectures using the OpenMP standard. Relevant aspects of performance and parallelism on cache-based shared memory machines are discussed and presented in detail. The methodology shows great promise in the simulation of high-Reynolds-number incompressible inert or reactive turbulent flows in realistic configurations.

Velocity/wave-vector Probability Density Function Models for Inhomogeneous Turbulent Flows

Velocity/wave-vector Probability Density Function Models for Inhomogeneous Turbulent Flows
Author: Paul Richard Van Slooten
Publisher:
Total Pages: 562
Release: 1998
Genre: Reynolds stress
ISBN:


Download Velocity/wave-vector Probability Density Function Models for Inhomogeneous Turbulent Flows Book in PDF, Epub and Kindle

Constructs and implements turbulence models for probability density function (PDF) methods for the computation of turbulent reacting flows. Treats the processes of convection and reaction without further assumptions at this level of closure, while the effects of the fluctuation pressure gradient and the diffusion of the fluctuating velocity by molecular viscosity require modeling. Effects correspond to the pressure-rate-of-strain correlations, the pressure transport, and the dissipation tensor in the Reynolds stress equation. Investigates models for each of these variables.

Statistical Theory and Modeling for Turbulent Flows

Statistical Theory and Modeling for Turbulent Flows
Author: P. A. Durbin
Publisher: John Wiley & Sons
Total Pages: 347
Release: 2011-06-28
Genre: Science
ISBN: 1119957524


Download Statistical Theory and Modeling for Turbulent Flows Book in PDF, Epub and Kindle

Providing a comprehensive grounding in the subject of turbulence, Statistical Theory and Modeling for Turbulent Flows develops both the physical insight and the mathematical framework needed to understand turbulent flow. Its scope enables the reader to become a knowledgeable user of turbulence models; it develops analytical tools for developers of predictive tools. Thoroughly revised and updated, this second edition includes a new fourth section covering DNS (direct numerical simulation), LES (large eddy simulation), DES (detached eddy simulation) and numerical aspects of eddy resolving simulation. In addition to its role as a guide for students, Statistical Theory and Modeling for Turbulent Flows also is a valuable reference for practicing engineers and scientists in computational and experimental fluid dynamics, who would like to broaden their understanding of fundamental issues in turbulence and how they relate to turbulence model implementation. Provides an excellent foundation to the fundamental theoretical concepts in turbulence. Features new and heavily revised material, including an entire new section on eddy resolving simulation. Includes new material on modeling laminar to turbulent transition. Written for students and practitioners in aeronautical and mechanical engineering, applied mathematics and the physical sciences. Accompanied by a website housing solutions to the problems within the book.

Turbulent Combustion Modeling

Turbulent Combustion Modeling
Author: Tarek Echekki
Publisher: Springer Science & Business Media
Total Pages: 496
Release: 2010-12-25
Genre: Technology & Engineering
ISBN: 9400704127


Download Turbulent Combustion Modeling Book in PDF, Epub and Kindle

Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book is intended for a relatively broad audience, including seasoned researchers and graduate students in engineering, applied mathematics and computational science, engine designers and computational fluid dynamics (CFD) practitioners, scientists at funding agencies, and anyone wishing to understand the state-of-the-art and the future directions of this scientifically challenging and practically important field.