Modeling Electric Vehicle Energy Demand and Regional Electricity Generation Dispatch for New England and New York

Modeling Electric Vehicle Energy Demand and Regional Electricity Generation Dispatch for New England and New York
Author: Sarah E. Howerter
Publisher:
Total Pages: 278
Release: 2019
Genre: Battery charging stations (Electric vehicles)
ISBN:


Download Modeling Electric Vehicle Energy Demand and Regional Electricity Generation Dispatch for New England and New York Book in PDF, Epub and Kindle

The transportation sector is a largest emitter of greenhouse gases in the U.S., accounting for 28.6% of all 2016 emissions, the majority of which come from the passenger vehicle fleet [1,2]. One major technology that is being investigated by researchers, planners, and policy makers to help lower the emissions from the transportation sector is the plug-in electric vehicle (PEV). The focus of this work is to investigate and model the impacts of increased levels of PEVs on the regional electric power grid and on the net change in CO2 emissions due to the decrease tailpipe emissions and the increase in electricity generation under current emissions caps. The study scope includes all of New England and New York state, modeled as one system of electricity supply and demand, which includes the estimated 2030 baseline demand and the current generation capacity plus increased renewable capacity to meet state Renewable Portfolio Standard targets for 2030. The models presented here include fully electric vehicles and plug-in hybrids, public charging infrastructure scenarios, hourly charging demand, solar and wind generation and capacity factors, and real-world travel derived from the 2016-2017 National Household Travel Survey. We make certain assumptions, informed by the literature, with the goal of creating a modeling methodology to improve the estimation of hourly PEV charging demand for input into regional electric sector dispatch models. The methodology included novel stochastic processes, considered seasonal and weekday versus weekend differences in travel, and did not force the PEV battery state-of-charge to be full at any specific time of day. The results support the need for public charging infrastructure, specifically at workplaces, with the "work" infrastructure scenario shifting more of the unmanaged charging demand to daylight hours when solar generation could be utilized. Workplace charging accounted for 40% of all non-home charging demand in the scenario where charging infrastructure was "universally" available. Under the increased renewable fuel portfolio, the reduction in average CO2 emissions ranged from 90 to 92% for the vehicles converted from ICEV to PEV. The total emissions reduced for 15% PEV penetration and universally available charging infrastructure was 5.85 million metric tons, 5.27% of system-wide emissions. The results support the premise of plug-in electric vehicles being an important strategy for the reduction of CO2 emissions in our study region. Future investigation into the extent of reductions possible with both the optimization of charging schedules through pricing or other mechanisms and the modeling of grid level energy storage is warranted. Additional model development should include a sensitivity analysis of the PEV charging demand model parameters, and better data on the charging behavior of PEV owners as they continue to penetrate the market at higher rates.

Well-to-wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles

Well-to-wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles
Author:
Publisher:
Total Pages:
Release: 2010
Genre:
ISBN:


Download Well-to-wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles Book in PDF, Epub and Kindle

Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission that incorporates a power-split device that allows for parallel power paths - mechanical and electrical - from the engine to the wheels, allowing the engine and the electric motor to share the power during acceleration. In the second configuration, the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle; thus, the engine never directly powers the vehicle's transmission. The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range because they require frequent use of the engine for acceleration and to provide energy when the battery is depleted, while the series configuration was adopted for PHEVs with a 30- and 40-mile electric range because they rely mostly on electrical power for propulsion. Argonne researchers calculated the equivalent on-road (real-world) fuel economy on the basis of U.S. Environmental Protection Agency miles per gallon (mpg)-based formulas. The reduction in fuel economy attributable to the on-road adjustment formula was capped at 30% for advanced vehicle systems (e.g., PHEVs, fuel cell vehicles [FCVs], hybrid electric vehicles [HEVs], and battery-powered electric vehicles [BEVs]). Simulations for calendar year 2020 with model year 2015 mid-size vehicles were chosen for this analysis to address the implications of PHEVs within a reasonable timeframe after their likely introduction over the next few years. For the WTW analysis, Argonne assumed a PHEV market penetration of 10% by 2020 in order to examine the impact of significant PHEV loading on the utility power sector. Technological improvement with medium uncertainty for each vehicle was also assumed for the analysis. Argonne employed detailed dispatch models to simulate the electric power systems in four major regions of the US: the New England Independent System Operator, the New York Independent System Operator, the State of Illinois, and the Western Electric Coordinating Council. Argonne also evaluated the US average generation mix and renewable generation of electricity for PHEV and BEV recharging scenarios to show the effects of these generation mixes on PHEV WTW results. Argonne's GREET model was designed to examine the WTW energy use and GHG emissions for PHEVs and BEVs, as well as FCVs, regular HEVs, and conventional gasoline internal combustion engine vehicles (ICEVs). WTW results are reported for charge-depleting (CD) operation of PHEVs under different recharging scenarios. The combined WTW results of CD and charge-sustaining (CS) PHEV operations (using the utility factor method) were also examined and reported. According to the utility factor method, the share of vehicle miles traveled during CD operation is 25% for PHEV10 and 51% for PHEV40. Argonne's WTW analysis of PHEVs revealed that the following factors significantly impact the energy use and GHG emissions results for PHEVs and BEVs compared with baseline gasoline vehicle technologies: (1) the regional electricity generation mix for battery recharging and (2) the adjustment of fuel economy and electricity consumption to reflect real-world driving conditions. Although the analysis predicted the marginal electricity generation mixes for major regions in the United States, these mixes should be evaluated as possible scenarios for recharging PHEVs because significant uncertainties are associated with the assumed market penetration for these vehicles. Thus, the reported WTW results for PHEVs should be directly correlated with the underlying generation mix, rather than with the region linked to that mix.

Electric Vehicles in Energy Systems

Electric Vehicles in Energy Systems
Author: Ali Ahmadian
Publisher: Springer Nature
Total Pages: 393
Release: 2020-01-20
Genre: Technology & Engineering
ISBN: 3030344487


Download Electric Vehicles in Energy Systems Book in PDF, Epub and Kindle

This book discusses the technical, economic, and environmental aspects of electric vehicles and their impact on electrical grids and energy systems. The book is divided into three parts that include load modeling, integration and optimization, and environmental evaluation. Theoretical background and practical examples accompany each section and the authors include helpful tips and hints in the load modeling and optimization sections. This book is intended to be a useful tool for undergraduate and graduate students, researchers and engineers who are trying to solve power and engineering problems related electric vehicles. Provides optimization techniques and their applications for energy systems; Discusses the economic and environmental perspectives of electric vehicles; Contains the most comprehensive information about electric vehicles in a single source.

Modeling the Effects of Electric Power Disruption and Expansion on the Operations of EV Charging Stations

Modeling the Effects of Electric Power Disruption and Expansion on the Operations of EV Charging Stations
Author: Mohannad Reda A. Kabli
Publisher:
Total Pages: 134
Release: 2018
Genre:
ISBN:


Download Modeling the Effects of Electric Power Disruption and Expansion on the Operations of EV Charging Stations Book in PDF, Epub and Kindle

The projected and current adoption rates of electric vehicles are increasing. Since electric vehicles require that they be recharged continually over time, the energy needs to support them is immense and growing. Given existing infrastructure is insufficient to supply the projected energy needs, models are necessary to help decision makers plan for how to best expand the power grid to meet this need. A successful power grid expansion is one that enables charging stations to service the electric vehicle community. Thus, plans for power expansion need to be coordinated between the power grid and charging station investors. The infrastructure for the charging stations has to also be resilient and reliable to absorb this increase in load. Charging stations therefore should be included in the plans for post power disruption planning. In this work, two two-stage stochastic programming models are developed that can be used to determine a power grid expansion plan that supports the energy needs, or load, from an uncertain set of electric vehicles geographically dispersed over a region. Another three-stage stochastic programming model is presented, where the decisions are made first to select which charging stations to install and expand uninterruptible power supply units and renewable energy sources. Then, when the disruption occurs in the second-stage, repairs in power system and charging stations take place ahead of the arrival of panicked population to prepare for the expected surge in power demand. Finally, as demand is unveiled, managerial and operational decisions at the charging stations are made in the third-stage. To solve the mathematical models, we utilize hybrid approaches which mainly make use of Sample Average Approximation and Progressive Hedging algorithm. To validate the proposed model and gain key insights, we perform computational experiments using realistic data representing the Washington, DC area. Our computational results indicate the robustness of the proposed algorithm while providing a number of managerial insights to the decision makers.

NSF-RANN Energy Abstracts

NSF-RANN Energy Abstracts
Author:
Publisher:
Total Pages: 518
Release: 1974
Genre: Power resources
ISBN:


Download NSF-RANN Energy Abstracts Book in PDF, Epub and Kindle

Modeling the Effects of Electric Power Disruption and Expansion on the Operations of EV Charging Stations

Modeling the Effects of Electric Power Disruption and Expansion on the Operations of EV Charging Stations
Author:
Publisher:
Total Pages:
Release: 2018
Genre:
ISBN:


Download Modeling the Effects of Electric Power Disruption and Expansion on the Operations of EV Charging Stations Book in PDF, Epub and Kindle

The projected and current adoption rates of electric vehicles are increasing. Since electric vehicles require that they be recharged continually over time, the energy needs to support them is immense and growing. Given existing infrastructure is insufficient to supply the projected energy needs, models are necessary to help decision makers plan for how to best expand the power grid to meet this need. A successful power grid expansion is one that enables charging stations to service the electric vehicle community. Thus, plans for power expansion need to be coordinated between the power grid and charging station investors. The infrastructure for the charging stations has to also be resilient and reliable to absorb this increase in load. Charging stations therefore should be included in the plans for post power disruption planning. In this work, two two-stage stochastic programming models are developed that can be used to determine a power grid expansion plan that sup- ports the energy needs, or load, from an uncertain set of electric vehicles geographically dispersed over a region. Another three-stage stochastic programming model is presented, where the decisions are made first to select which charging stations to install and expand uninterruptible power supply units and renewable energy sources. Then, when the disrup- tion occurs in the second-stage, repairs in power system and charging stations take place ahead of the arrival of panicked population to prepare for the expected surge in power de- mand. Finally, as demand is unveiled, managerial and operational decisions at the charging stations are made in the third-stage. To solve the mathematical models, we utilize hybrid approaches which mainly make use of Sample Average Approximation and Progressive Hedging algorithm. To validate the proposed model and gain key insights, we perform computational experiments using realistic data representing the Washington, DC area. Our computational results indicate the robustn

Electric Vehicle Managed Charging: Forward-Looking Estimates of Bulk Power System Value

Electric Vehicle Managed Charging: Forward-Looking Estimates of Bulk Power System Value
Author:
Publisher:
Total Pages: 0
Release: 2022
Genre:
ISBN:


Download Electric Vehicle Managed Charging: Forward-Looking Estimates of Bulk Power System Value Book in PDF, Epub and Kindle

When and where electric vehicle charging occurs has significant implications for power systems supporting widespread electric vehicle deployment with high shares of wind and solar generation. Numerous studies have estimated the value of scheduling or otherwise managing electric vehicle charging in such power systems. This study improves on those earlier works by leveraging detailed simulation models for electric vehicle adoption, electric vehicle use, electric vehicle charging, and bulk power system operations; and linking them with methods for describing charging flexibility at both the individual vehicle and aggregate levels. This study closely analyzes electric vehicle managed charging (EVMC) performance along the dimensions of flexibility type (within-charging session or within-week scheduling), dispatch mechanism (direct load control or one of several price-based mechanisms), and participation rate, under the assumptions of ubiquitous chargers and all trips completed on time. The study is located in a passenger light-duty vehicle adoption scenario with 100% electric vehicle sales by 2035, and in an envisioned 2038 New England power system for which within-region generation is 84% clean.

Electric Vehicle - Smart Grid Integration: Load Modeling, Scheduling, and Cyber Security

Electric Vehicle - Smart Grid Integration: Load Modeling, Scheduling, and Cyber Security
Author: Yu-Wei Chung
Publisher:
Total Pages: 126
Release: 2020
Genre:
ISBN:


Download Electric Vehicle - Smart Grid Integration: Load Modeling, Scheduling, and Cyber Security Book in PDF, Epub and Kindle

The modern world has witnessed the surge of electric vehicles (EVs) driven by government policy worldwide to reduce transportation's dependence on fossil fuels. According to (Slowik, 2019), the global EV market has grown sharply with the annual light-duty EV sales surpassing 2 million in 2018, which is about a 70% increase from 2017. The increase in EV population implies the rise in energy demand, and that introduces new challenges to the electricity sector. EV charging load demand in high penetration scenarios, which is foreseen, may lead to stability and quality issues in power grids. Generation capacity and the electricity infrastructure upgrade may be required to address those issues; however, it increases generation costs significantly. The most common EV chargers installed today deliver around 7 kW of power, which is over four times that of an average household power consumption in the US. EV charging load often shows two peaks in a day, one in the morning when people plug in the EV at the workplace and the other in the evening when people get home from work. Without proper energy management for EV charging, the vast power demand due to a large number of plugged-in EVs can stress the electric grid, degrade the electric power quality, and impact the wholesale electricity market. Although an EV battery may store energy up to 80 kWh, which requires more than 10 hours to charge at 7kW from empty, we found that most EVs need only 12 kWh per charge or 1.7 hours at 7 kW to meet daily commute requirement while they stay in the parking garage for a more extended period. This implies that EVs can have considerable time-flexibility for charging, and it is not necessary to start charging right after plugging in, which is likely to result in the charging power add-up. A proper EV charging schedule can well allocate the charging load to prevent power peaks. Therefore, EV charging scheduling can play a significant role in mitigating the adverse effects of vast EV charging demand without upgrading the power grid capacity. To optimize the EV charging schedule while satisfies EVs' charging demand, each EV's stay duration and energy need are essential parameters for the optimization. Those parameters are based on predictions to minimize human intervention. Nonetheless, the uncertainty of EV user behavior poses a challenge to the prediction accuracy. Therefore, this dissertation demonstrates an ensemble machine learning-based method to model and predict the EV loads accurately, thereby improving the performance of EV charging scheduling. On the other hand, this smart EV-grid integration, which requires massive communication, including collecting, transmitting, and distributing real-time data within the network, makes it more susceptible to cyber-physical threats. Potential breaches could not only affect grid operation but also reduce consumers' willingness to adopting EVs over conventional fuel-powered vehicles. This dissertation also presents the vulnerability analysis and risk assessment for a smart EV charging system to develop the countermeasures to secure the network. Also, while it is inevitable that the security has flaws, this dissertation provides a novel anomaly detection approach based on the invariant correlations of different measurements within the EV charging network.

The Oak Ridge Competitive Electricity Dispatch (ORCED) Model Version 9

The Oak Ridge Competitive Electricity Dispatch (ORCED) Model Version 9
Author:
Publisher:
Total Pages: 60
Release: 2016
Genre:
ISBN:


Download The Oak Ridge Competitive Electricity Dispatch (ORCED) Model Version 9 Book in PDF, Epub and Kindle

The Oak Ridge Competitive Electricity Dispatch (ORCED) model dispatches power plants in a region to meet the electricity demands for any single given year up to 2030. It uses publicly available sources of data describing electric power units such as the National Energy Modeling System and hourly demands from utility submittals to the Federal Energy Regulatory Commission that are projected to a future year. The model simulates a single region of the country for a given year, matching generation to demands and predefined net exports from the region, assuming no transmission constraints within the region. ORCED can calculate a number of key financial and operating parameters for generating units and regional market outputs including average and marginal prices, air emissions, and generation adequacy. By running the model with and without changes such as generation plants, fuel prices, emission costs, plug-in hybrid electric vehicles, distributed generation, or demand response, the marginal impact of these changes can be found.

Proceedings of the National Energy Modeling System Conference

Proceedings of the National Energy Modeling System Conference
Author:
Publisher: DIANE Publishing
Total Pages: 1044
Release: 1994
Genre:
ISBN: 9780788103155


Download Proceedings of the National Energy Modeling System Conference Book in PDF, Epub and Kindle

Provides potential users of the Nat. Energy Modeling System under development a detailed look at the components of the new modeling system, and affords the opportunity for critical analysis of the system by recognized experts in the modeling field and input from potential users about how the system can best address their needs. Covers: oil and gas, renewable fuels, electricity planning, petroleum markets, gas transmission and distribution, coal supply and coal synthetics, transport. demand, oil supply, and more. Charts and tables. Over 80 presentations.