Modeling and Hardware-in-the-loop Simulation of Power-split Hybrid Electric Vehicles

Modeling and Hardware-in-the-loop Simulation of Power-split Hybrid Electric Vehicles
Author: Shreyash Joshi
Publisher:
Total Pages: 66
Release: 2013
Genre:
ISBN:


Download Modeling and Hardware-in-the-loop Simulation of Power-split Hybrid Electric Vehicles Book in PDF, Epub and Kindle

Conventional vehicles are creating pollution problems, global warming and the extinction of high density fuels. To address these problems, automotive companies and universities are researching on hybrid electric vehicles where two different power devices are used to propel a vehicle. This research studies the development and testing of a dynamic model for Prius 2010 Hybrid Synergy Drive (HSD), a power-split device. The device was modeled and integrated with a hybrid vehicle model. To add an electric only mode for vehicle propulsion, the hybrid synergy drive was modified by adding a clutch to carrier 1. The performance of the integrated vehicle model was tested with UDDS drive cycle using rule-based control strategy. The dSPACE Hardware-In-the-Loop (HIL) simulator was used for HIL simulation test. The HIL simulation result shows that the integration of developed HSD dynamic model with a hybrid vehicle model was successful. The HSD model was able to split power and isolate engine speed from vehicle speed in hybrid mode.

Automotive Applications of Hardware-in-the-Loop (HIL) Simulation

Automotive Applications of Hardware-in-the-Loop (HIL) Simulation
Author: Adit Joshi
Publisher: SAE International
Total Pages: 246
Release: 2019-08-13
Genre: Technology & Engineering
ISBN: 1468600044


Download Automotive Applications of Hardware-in-the-Loop (HIL) Simulation Book in PDF, Epub and Kindle

Automotive Applications of Hardware-in-the-Loop (HIL) Simulation shines a light on HIL simulation testing methodology commonly used in the automotive industry for conventional, electrification and autonomy applications and can serve as an introductory resource for college students looking to join the automotive industry or experienced technical professionals who need a deeper understanding on what is HIL simulation, what are its benefits and how can it be used in their respective organizations.

Introduction to Hybrid Vehicle System Modeling and Control

Introduction to Hybrid Vehicle System Modeling and Control
Author: Wei Liu
Publisher: John Wiley & Sons
Total Pages: 428
Release: 2013-02-08
Genre: Transportation
ISBN: 1118407393


Download Introduction to Hybrid Vehicle System Modeling and Control Book in PDF, Epub and Kindle

This is an engineering reference book on hybrid vehicle system analysis and design, an outgrowth of the author's substantial work in research, development and production at the National Research Council Canada, Azure Dynamics and now General Motors. It is an irreplaceable tool for helping engineers develop algorithms and gain a thorough understanding of hybrid vehicle systems. This book covers all the major aspects of hybrid vehicle modeling, control, simulation, performance analysis and preliminary design. It not only systemically provides the basic knowledge of hybrid vehicle system configuration and main components, but also details their characteristics and mathematic models. Provides valuable technical expertise necessary for building hybrid vehicle system and analyzing performance via drivability, fuel economy and emissions Built from the author's industry experience at major vehicle companies including General Motors and Azure Dynamics Inc. Offers algorithm implementations and figures/examples extracted from actual practice systems Suitable for a training course on hybrid vehicle system development with supplemental materials An essential resource enabling hybrid development and design engineers to understand the hybrid vehicle systems necessary for control algorithm design and developments.

Modeling for Hybrid and Electric Vehicles Using Simscape

Modeling for Hybrid and Electric Vehicles Using Simscape
Author: Shuvra Das
Publisher: Springer Nature
Total Pages: 208
Release: 2022-06-01
Genre: Technology & Engineering
ISBN: 3031015088


Download Modeling for Hybrid and Electric Vehicles Using Simscape Book in PDF, Epub and Kindle

Automobiles have played an important role in the shaping of the human civilization for over a century and continue to play a crucial role today. The design, construction, and performance of automobiles have evolved over the years. For many years, there has been a strong shift toward electrification of automobiles. It started with the by-wire systems where more efficient electro-mechanical subsystems started replacing purely mechanical devices, e.g., anti-lock brakes, drive-by-wire, and cruise control. Over the last decade, driven by a strong push for fuel efficiency, pollution reduction, and environmental stewardship, electric and hybrid electric vehicles have become quite popular. In fact, almost all the automobile manufacturers have adopted strategies and launched vehicle models that are electric and/or hybrid. With this shift in technology, employers have growing needs for new talent in areas such as energy storage and battery technology, power electronics, electric motor drives, embedded control systems, and integration of multi-disciplinary systems. To support these needs, universities are adjusting their programs to train students in these new areas of expertise. For electric and hybrid technology to deliver superior performance and efficiency, all sub-systems have to work seamlessly and in unison every time and all the time. To ensure this level of precision and reliability, modeling and simulation play crucial roles during the design and development cycle of electric and hybrid vehicles. Simscape, a Matlab/Simulink toolbox for modeling physical systems, is an ideally suited platform for developing and deploying models for systems and sub-systems that are critical for hybrid and electric vehicles. This text will focus on guiding the reader in the development of models for all critical areas of hybrid and electric vehicles. There are numerous texts on electric and hybrid vehicles in the market right now. A majority of these texts focus on the relevant technology and the physics and engineering of their operation. In contrast, this text focuses on the application of some of the theories in developing models of physical systems that are at the core of hybrid and electric vehicles. Simscape is the tool of choice for the development of these models. Relevant background and appropriate theory are referenced and summarized in the context of model development with significantly more emphasis on the model development procedure and obtaining usable and accurate results.

Modeling, Analysis, Simulation and Real-time Hardware In-the-loop Implementation of Hybrid/electric Vehicles' Powertrain

Modeling, Analysis, Simulation and Real-time Hardware In-the-loop Implementation of Hybrid/electric Vehicles' Powertrain
Author: Ahmed S. Abdelrahman
Publisher:
Total Pages: 0
Release: 2019
Genre:
ISBN:


Download Modeling, Analysis, Simulation and Real-time Hardware In-the-loop Implementation of Hybrid/electric Vehicles' Powertrain Book in PDF, Epub and Kindle

This thesis investigates modeling, analysis and simulation of propulsion system in HEVs/EVs with particular emphasis on transient modeling. To achieve that, a novel complete simulation model on PSIM platform has been performed; proved worthy on two commercially existing cars in the market, namely Chevy Volt and Nissan Leaf. This was done using real data obtained from the Oak Ridge National Laboratory and the Environmental Protection Agency (EPA). Another milestone is that the simulation results have been validated experimentally in real-time through using Hardware in-the Loop (HIL) technology. In this thesis, the main focus is to develop a versatile generic approach based on transient analysis of HEVs/EVs propulsion powertrain. Moreover, evaluates the power train performance when incorporated with new futuristic innovative components. For example, a new proposed two-speed transmission system developed by inMotive corporation that can be applied to most of electrified vehicles. Further, wide band gap (WBG) devices such as GaN semiconductors and SiC devices have been integrated in the system, one at a time. A comparison study in terms of total power losses and efficiency calculations at different temperatures and switching frequencies due to using each of them has been accomplished. This approach is not only considering the system dynamics through controlling different state variables, but also implementing a daily real driving cycle to emulate exactly the same real driving environment. For a sound design, the developed model, which has low computational intensity, is utilized to determine the proper sizing and later the dynamic behavior of the main components such as battery, DC-DC converter, DC-AC converter and electrical motor. To prove the versatility of the developed model, it was tried on permanent magnet based cars (Chevy Volt and Nissan Leaf) and futuristic high performance induction motors (Audi eTron), a thorough investigation of the performance of three different topologies of induction motors; singly-fed induction motor (SFIM), doubly-fed induction motor (DFIM), and cascaded doubly-fed induction motor (CDFIM) has been conducted. This performance comparison is supported by a comprehensive finite element analysis and cost assessment to obtain the best candidate to be used in HEVs/EVs applications.

Electric Vehicle Design

Electric Vehicle Design
Author: Krishan Arora
Publisher: John Wiley & Sons
Total Pages: 373
Release: 2024-04-18
Genre: Technology & Engineering
ISBN: 1394205074


Download Electric Vehicle Design Book in PDF, Epub and Kindle

ELECTRIC VEHICLE DESIGN This book will serve as a definitive guide to conceptual and practical knowledge about the design of hybrid electrical vehicles (HEV), battery electrical vehicles (BEV), fuel cell electrical vehicles (FCEV), plug-in hybrid electrical vehicles (PHEV), and efficient EV charging techniques with advanced tools and methodologies for students, engineers, and academics alike. This book deals with novel concepts related to fundamentals, design, and applications of conventional automobiles with internal combustion engines (ICEs), electric vehicles (EVs), hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). It broadly covers vehicle performance, configuration, control strategy, design methodology, modeling, and simulation for different conventional and hybrid vehicles based on mathematical equations. Fundamental and practical examples of conventional electrical machines, advanced electrical machines, battery energy sources, on-board charging and off-board charging techniques, and optimization methods are presented here. This book can be useful for students, researchers, and practitioners interested in different problems and challenges associated with electric vehicles. Furthermore, in explaining the design methodology of each drive train, design examples are presented with simulation results.

Real Time Simulation and Hardware-in-loop Testing of a Hybrid Electric Vehicle Control System

Real Time Simulation and Hardware-in-loop Testing of a Hybrid Electric Vehicle Control System
Author: Praveen Medisetti
Publisher:
Total Pages: 124
Release: 2007
Genre: Electrical engineering
ISBN:


Download Real Time Simulation and Hardware-in-loop Testing of a Hybrid Electric Vehicle Control System Book in PDF, Epub and Kindle

This thesis explains various stages of the vehicle controller development, especially for a Hybrid Electric Vehicle (HEV), and documents the development of a platform for vehicle controller testing. Two stages of testing a vehicle controller, namely Software-in-Loop (SIL) simulation and Hardware-in-Loop (HIL) simulation, are explained in a stepwise manner for the series-parallel 2x2 HEV. The idea of using a common tool from the design stage to the prototyping stage is demonstrated. The series-parallel 2x2 HEV is modeled using the Powertrain Systems Analysis Toolkit (PSAT) in Matlab/Simulink. A rule based vehicle control strategy is added to the existing control libraries in PSAT. The SIL testing of the HEV model is done by exercising it over various drive cycles. A HIL platform is built from the ground up using commercially available off-the-shelf computers and Input/Output cards. The offline model of the HEV is simulated on the HIL platform to start the vehicle controller testing process. The preliminary HEV model was used to demonstrate the capabilities of the HIL setup. The HIL simulation setup is scalable and allows the incorporation of additional computational nodes for distributed simulation of complex systems without a major change to the original setup. The HEV model is run in real time on two computation nodes and the differences between offline and online simulations are discussed. The HIL simulation platform is successfully built and can be used for testing and tuning the vehicle controller.

Modeling, Simulation Design and Control of Hybrid-Electric Vehicle Drives

Modeling, Simulation Design and Control of Hybrid-Electric Vehicle Drives
Author:
Publisher:
Total Pages:
Release: 2005
Genre:
ISBN:


Download Modeling, Simulation Design and Control of Hybrid-Electric Vehicle Drives Book in PDF, Epub and Kindle

Ohio State University (OSU) is uniquely poised to establish such a center, with interdisciplinary emphasis on modeling, simulation, design and control of hybrid-electric drives for a number of reasons, some of which are: (1) The OSU Center for Automotive Research (CAR) already provides an infrastructure for interdisciplinary automotive research and graduate education; the facilities available at OSU-CAR in the area of vehicle and powertrain research are among the best in the country. CAR facilities include 31,000 sq. feet of space, multiple chassis and engine dynamometers, an anechoic chamber, and a high bay area. (2) OSU has in excess of 10 graduate level courses related to automotive systems. A graduate level sequence has already been initiated with GM. In addition, an Automotive Systems Engineering (ASE) program cosponsored by the mechanical and electrical engineering programs, had been formulated earlier at OSU, independent of the GATE program proposal. The main objective of the ASE is to provide multidisciplinary graduate education and training in the field of automotive systems to Masters level students. This graduate program can be easily adapted to fulfill the spirit of the GATE Center of Excellence. (3) A program in Mechatronic Systems Engineering has been in place at OSU since 1994; this program has a strong emphasis on automotive system integration issues, and has emphasized hybrid-electric vehicles as one of its application areas. (4) OSU researchers affiliated with CAR have been directly involved in the development and study of: HEV modeling and simulation; electric drives; transmission design and control; combustion engines; and energy storage systems. These activities have been conducted in collaboration with government and automotive industry sponsors; further, the same researchers have been actively involved in continuing education programs in these areas with the automotive industry. The proposed effort will include: (1) The development of a laboratory facility that will include: electric drive and IC engine test benches; a test vehicle designed for rapid installation of prototype drives; benches for the measurement and study of HEV energy storage components (batteries, ultra-capacitors, flywheels); hardware-in-the-loop control system development tools. (2) The creation of new courses and upgrades of existing courses on subjects related to: HEV modeling and simulation; supervisory control of HEV drivetrains; engine, transmission, and electric drive modeling and control. Specifically, two new courses (one entitled HEV Component Analysis: and the other entitled HEV System Integration and Control) will be developed. Two new labs, that will be taught with the courses (one entitled HEV Components Lab and one entitled HEV Systems and Control lab) will also be developed. (3) The consolidation of already existing ties among faculty in electrical and mechanical engineering departments. (4) The participation of industrial partners through: joint laboratory development; internship programs; continuing education programs; research project funding. The proposed effort will succeed because of the already exceptional level of involvement in HEV research and in graduate education in automotive engineering at OSU, and because the PIs have a proven record of interdisciplinary collaboration as evidenced by joint proposals, joint papers, and co-advising of graduate students. OSU has been expanding its emphasis in Automotive Systems for quite some time. This has led to numerous successes such as the establishment of the Center of Automotive Research, a graduate level course sequence with GM, and numerous grants and contracts on automotive research. The GATE Center of Excellence is a natural extension of what educators at OSU already do well.