Mixed-Order Finite Elements for the Solution of Three-Dimensional Electromagnetic Fields

Mixed-Order Finite Elements for the Solution of Three-Dimensional Electromagnetic Fields
Author: Z. J. Cendes
Publisher:
Total Pages: 33
Release: 1986
Genre:
ISBN:


Download Mixed-Order Finite Elements for the Solution of Three-Dimensional Electromagnetic Fields Book in PDF, Epub and Kindle

A new method of modeling electromagnetic waves by the finite element method is presented. The method is based on a numerical formulation in which different orders of polynomials are used to approximate the three different components of either the electric or the magnetic field vectors. It provides a reliable procedure for the finite element solution of three-dimensional electromagnetic field problems. Heretofore, such solutions were plagued by the presence of spurious modes. The new method is applied to the analysis of fields in resonant electromagnetic cavities. Keywords: Bistatic scattering; Finite element analysis; Cloning; Measurements.

Quick Finite Elements for Electromagnetic Waves

Quick Finite Elements for Electromagnetic Waves
Author: Giuseppe Pelosi
Publisher: Artech House
Total Pages: 311
Release: 2009
Genre: Science
ISBN: 1596933461


Download Quick Finite Elements for Electromagnetic Waves Book in PDF, Epub and Kindle

The classic 1998 Artech House book, Quick Finite Elements for Electromagnetic Waves, has now been revised and expanded to bring you up-to-date with the latest developments in the Field. You find brand new discussions on finite elements in 3D, 3D resonant cavities, and 3D waveguide devices. Moreover, the second edition supplies you with MATLAB code, making this resource easier to comprehend and use for your projects in the field. This practical book and accompanying software enables you to quickly and easily work out challenging microwave engineering and high-frequency electromagnetic problems using the finite element method (FEM). Using clear, concise text and dozens of real-world application examples, the book provides a detailed description of FEM implementation, while the software provides the code and tools needed to solve the three major types of EM problems: guided propagation, scattering, and radiation. With this unique book and software set in hand, you can compute the dispersion diagram of arbitrarily shaped inhomogeneous isotropic lossless or lossy guiding structures, analyze E- and H-plane waveguide discontinuities and devices, and understand the reflection from and transmission through simple 2D and 3D inhomogeneous periodic structures. CD-ROM Included! Easy-to-use finite element software contains ready-made MATLAB and FORTRAN source code that you can use immediately to solve a wide range of microwave and EM problems. The package is fully compatible with Internet "freeware, " so you can perform advanced engineering functions without having to purchase expensive pre- and post-processing tools.

Finite Elements in Electrical and Magnetic Field Problems

Finite Elements in Electrical and Magnetic Field Problems
Author: M. V. K. Chari
Publisher: John Wiley & Sons
Total Pages: 240
Release: 1980
Genre: Mathematics
ISBN:


Download Finite Elements in Electrical and Magnetic Field Problems Book in PDF, Epub and Kindle

Finite elements - the basic concepts and an application to 3-D magnetostatic problems. The fundamental equations of eletric and magnetic fields. Shape functions. Software engineering aspects of finite elements. Finite element solution of magnetic and electric field problems in electrical machines and devices. Numerical analysis of Eddy-Current problems. The high-order polynomial finite element method in electromagnetic field computation. Transient solution of the diffusion equation by discrete Fourier transformation. Mutually constrained partial differential and integral equation field formulations. Applications of integral equation methods to the numerical solution of magnetostatic and Eddy-Current problems.

Multigrid Finite Element Methods for Electromagnetic Field Modeling

Multigrid Finite Element Methods for Electromagnetic Field Modeling
Author: Yu Zhu
Publisher: John Wiley & Sons
Total Pages: 438
Release: 2006-03-10
Genre: Science
ISBN: 0471786373


Download Multigrid Finite Element Methods for Electromagnetic Field Modeling Book in PDF, Epub and Kindle

This is the first comprehensive monograph that features state-of-the-art multigrid methods for enhancing the modeling versatility, numerical robustness, and computational efficiency of one of the most popular classes of numerical electromagnetic field modeling methods: the method of finite elements. The focus of the publication is the development of robust preconditioners for the iterative solution of electromagnetic field boundary value problems (BVPs) discretized by means of finite methods. Specifically, the authors set forth their own successful attempts to utilize concepts from multigrid and multilevel methods for the effective preconditioning of matrices resulting from the approximation of electromagnetic BVPs using finite methods. Following the authors' careful explanations and step-by-step instruction, readers can duplicate the authors' results and take advantage of today's state-of-the-art multigrid/multilevel preconditioners for finite element-based iterative electromagnetic field solvers. Among the highlights of coverage are: * Application of multigrid, multilevel, and hybrid multigrid/multilevel preconditioners to electromagnetic scattering and radiation problems * Broadband, robust numerical modeling of passive microwave components and circuits * Robust, finite element-based modal analysis of electromagnetic waveguides and cavities * Application of Krylov subspace-based methodologies for reduced-order macromodeling of electromagnetic devices and systems * Finite element modeling of electromagnetic waves in periodic structures The authors provide more than thirty detailed algorithms alongside pseudo-codes to assist readers with practical computer implementation. In addition, each chapter includes an applications section with helpful numerical examples that validate the authors' methodologies and demonstrate their computational efficiency and robustness. This groundbreaking book, with its coverage of an exciting new enabling computer-aided design technology, is an essential reference for computer programmers, designers, and engineers, as well as graduate students in engineering and applied physics.

Finite Elements for Wave Electromagnetics

Finite Elements for Wave Electromagnetics
Author: IEEE Antennas and Propagation Society
Publisher: Institute of Electrical & Electronics Engineers(IEEE)
Total Pages: 560
Release: 1994
Genre: Mathematics
ISBN:


Download Finite Elements for Wave Electromagnetics Book in PDF, Epub and Kindle

The Finite Element Method in Electromagnetics

The Finite Element Method in Electromagnetics
Author: Jian-Ming Jin
Publisher: John Wiley & Sons
Total Pages: 728
Release: 2015-02-18
Genre: Science
ISBN: 1118842022


Download The Finite Element Method in Electromagnetics Book in PDF, Epub and Kindle

A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The Finite Element Method in Electromagnetics, Third Edition explains the method’s processes and techniques in careful, meticulous prose and covers not only essential finite element method theory, but also its latest developments and applications—giving engineers a methodical way to quickly master this very powerful numerical technique for solving practical, often complicated, electromagnetic problems. Featuring over thirty percent new material, the third edition of this essential and comprehensive text now includes: A wider range of applications, including antennas, phased arrays, electric machines, high-frequency circuits, and crystal photonics The finite element analysis of wave propagation, scattering, and radiation in periodic structures The time-domain finite element method for analysis of wideband antennas and transient electromagnetic phenomena Novel domain decomposition techniques for parallel computation and efficient simulation of large-scale problems, such as phased-array antennas and photonic crystals Along with a great many examples, The Finite Element Method in Electromagnetics is an ideal book for engineering students as well as for professionals in the field.

Finite Element Method Electromagnetics

Finite Element Method Electromagnetics
Author: John L. Volakis
Publisher: John Wiley & Sons
Total Pages: 364
Release: 1998-06-15
Genre: Science
ISBN: 9780780334250


Download Finite Element Method Electromagnetics Book in PDF, Epub and Kindle

Employed in a large number of commercial electromagnetic simulation packages, the finite element method is one of the most popular and well-established numerical techniques in engineering. This book covers the theory, development, implementation, and application of the finite element method and its hybrid versions to electromagnetics. FINITE ELEMENT METHOD FOR ELECTROMAGNETICS begins with a step-by-step textbook presentation of the finite method and its variations then goes on to provide up-to-date coverage of three dimensional formulations and modern applications to open and closed domain problems. Worked out examples are included to aid the reader with the fine features of the method and the implementation of its hybridization with other techniques for a robust simulation of large scale radiation and scattering. The crucial treatment of local boundary conditions is carefully worked out in several stages in the book. Sponsored by: IEEE Antennas and Propagation Society.

Introduction to the Finite Element Method in Electromagnetics

Introduction to the Finite Element Method in Electromagnetics
Author: Anastasis Polycarpou
Publisher: Springer Nature
Total Pages: 115
Release: 2022-05-31
Genre: Technology & Engineering
ISBN: 3031016890


Download Introduction to the Finite Element Method in Electromagnetics Book in PDF, Epub and Kindle

This series lecture is an introduction to the finite element method with applications in electromagnetics. The finite element method is a numerical method that is used to solve boundary-value problems characterized by a partial differential equation and a set of boundary conditions. The geometrical domain of a boundary-value problem is discretized using sub-domain elements, called the finite elements, and the differential equation is applied to a single element after it is brought to a “weak” integro-differential form. A set of shape functions is used to represent the primary unknown variable in the element domain. A set of linear equations is obtained for each element in the discretized domain. A global matrix system is formed after the assembly of all elements. This lecture is divided into two chapters. Chapter 1 describes one-dimensional boundary-value problems with applications to electrostatic problems described by the Poisson's equation. The accuracy of the finite element method is evaluated for linear and higher order elements by computing the numerical error based on two different definitions. Chapter 2 describes two-dimensional boundary-value problems in the areas of electrostatics and electrodynamics (time-harmonic problems). For the second category, an absorbing boundary condition was imposed at the exterior boundary to simulate undisturbed wave propagation toward infinity. Computations of the numerical error were performed in order to evaluate the accuracy and effectiveness of the method in solving electromagnetic problems. Both chapters are accompanied by a number of Matlab codes which can be used by the reader to solve one- and two-dimensional boundary-value problems. These codes can be downloaded from the publisher's URL: www.morganclaypool.com/page/polycarpou This lecture is written primarily for the nonexpert engineer or the undergraduate or graduate student who wants to learn, for the first time, the finite element method with applications to electromagnetics. It is also targeted for research engineers who have knowledge of other numerical techniques and want to familiarize themselves with the finite element method. The lecture begins with the basics of the method, including formulating a boundary-value problem using a weighted-residual method and the Galerkin approach, and continues with imposing all three types of boundary conditions including absorbing boundary conditions. Another important topic of emphasis is the development of shape functions including those of higher order. In simple words, this series lecture provides the reader with all information necessary for someone to apply successfully the finite element method to one- and two-dimensional boundary-value problems in electromagnetics. It is suitable for newcomers in the field of finite elements in electromagnetics.

Multigrid Finite Element Methods for Electromagnetic Field Modeling

Multigrid Finite Element Methods for Electromagnetic Field Modeling
Author: Yu Zhu
Publisher: John Wiley & Sons
Total Pages: 453
Release: 2006-02-03
Genre: Science
ISBN: 0471741108


Download Multigrid Finite Element Methods for Electromagnetic Field Modeling Book in PDF, Epub and Kindle

This is the first comprehensive monograph that features state-of-the-art multigrid methods for enhancing the modeling versatility, numerical robustness, and computational efficiency of one of the most popular classes of numerical electromagnetic field modeling methods: the method of finite elements. The focus of the publication is the development of robust preconditioners for the iterative solution of electromagnetic field boundary value problems (BVPs) discretized by means of finite methods. Specifically, the authors set forth their own successful attempts to utilize concepts from multigrid and multilevel methods for the effective preconditioning of matrices resulting from the approximation of electromagnetic BVPs using finite methods. Following the authors' careful explanations and step-by-step instruction, readers can duplicate the authors' results and take advantage of today's state-of-the-art multigrid/multilevel preconditioners for finite element-based iterative electromagnetic field solvers. Among the highlights of coverage are: * Application of multigrid, multilevel, and hybrid multigrid/multilevel preconditioners to electromagnetic scattering and radiation problems * Broadband, robust numerical modeling of passive microwave components and circuits * Robust, finite element-based modal analysis of electromagnetic waveguides and cavities * Application of Krylov subspace-based methodologies for reduced-order macromodeling of electromagnetic devices and systems * Finite element modeling of electromagnetic waves in periodic structures The authors provide more than thirty detailed algorithms alongside pseudo-codes to assist readers with practical computer implementation. In addition, each chapter includes an applications section with helpful numerical examples that validate the authors' methodologies and demonstrate their computational efficiency and robustness. This groundbreaking book, with its coverage of an exciting new enabling computer-aided design technology, is an essential reference for computer programmers, designers, and engineers, as well as graduate students in engineering and applied physics.

Three Dimensional Finite Element Method Applied to Study the Penetration of Electromagnetic Fields in Cavities

Three Dimensional Finite Element Method Applied to Study the Penetration of Electromagnetic Fields in Cavities
Author: Darcy N. Ladd
Publisher:
Total Pages: 214
Release: 1990
Genre: Electromagnetic fields
ISBN:


Download Three Dimensional Finite Element Method Applied to Study the Penetration of Electromagnetic Fields in Cavities Book in PDF, Epub and Kindle

A three dimensional formulation of the finite element method was developed to solve the electromagnetic field distribution in an arbitrary region containing conducting and dielectric materials when the tangential magnetic field was known at the boundaries. The formulation was developed using a three component vector magnetic potential and a scalar electric potential. The displacement current as well as the conduction current term was accounted for. The region of interest was discretized using eight node isoparametric hexahedrons and the potential functions were defined using linear first order basis functions. The frequency domain finite element method program was validated by comparison with closed form solutions for simplified geometries. The algorithm proved to have a convergent solution when solving the diffusion of electromagnetic fields into conducting hollow and solid structures without apertures. The penetration of a steady-state electromagnetic field through an aperture into a simple cavity was analyzed with the 3-D FEM program. The diffusion of a step-impulse magnetic filed into a conducting slab was solved directly in the time domain with a time domain finite element program. Conclusions were drawn on the feasibility of using the finite element method as part of an EMI/EMC CAD package.