Mathematical Methods in Image Reconstruction

Mathematical Methods in Image Reconstruction
Author: Frank Natterer
Publisher: SIAM
Total Pages: 226
Release: 2001-01-01
Genre: Computers
ISBN: 0898716225


Download Mathematical Methods in Image Reconstruction Book in PDF, Epub and Kindle

This book provides readers with a superior understanding of the mathematical principles behind imaging.

Mathematical Methods in Image Reconstruction

Mathematical Methods in Image Reconstruction
Author: Frank Natterer
Publisher: SIAM
Total Pages: 228
Release: 2001-01-01
Genre: Computers
ISBN: 9780898718324


Download Mathematical Methods in Image Reconstruction Book in PDF, Epub and Kindle

This book describes the state of the art of the mathematical theory and numerical analysis of imaging. Some of the applications covered in the book include computerized tomography, magnetic resonance imaging, emission tomography, electron microscopy, ultrasound transmission tomography, industrial tomography, seismic tomography, impedance tomography, and NIR imaging.

Handbook of Mathematical Methods in Imaging

Handbook of Mathematical Methods in Imaging
Author: Otmar Scherzer
Publisher: Springer Science & Business Media
Total Pages: 1626
Release: 2010-11-23
Genre: Mathematics
ISBN: 0387929193


Download Handbook of Mathematical Methods in Imaging Book in PDF, Epub and Kindle

The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.

Mathematical Methods in Image Processing and Inverse Problems

Mathematical Methods in Image Processing and Inverse Problems
Author: Xue-Cheng Tai
Publisher: Springer Nature
Total Pages: 226
Release: 2021-09-25
Genre: Mathematics
ISBN: 9811627010


Download Mathematical Methods in Image Processing and Inverse Problems Book in PDF, Epub and Kindle

This book contains eleven original and survey scientific research articles arose from presentations given by invited speakers at International Workshop on Image Processing and Inverse Problems, held in Beijing Computational Science Research Center, Beijing, China, April 21–24, 2018. The book was dedicated to Professor Raymond Chan on the occasion of his 60th birthday. The contents of the book cover topics including image reconstruction, image segmentation, image registration, inverse problems and so on. Deep learning, PDE, statistical theory based research methods and techniques were discussed. The state-of-the-art developments on mathematical analysis, advanced modeling, efficient algorithm and applications were presented. The collected papers in this book also give new research trends in deep learning and optimization for imaging science. It should be a good reference for researchers working on related problems, as well as for researchers working on computer vision and visualization, inverse problems, image processing and medical imaging.

Mathematical Methods in Computer Vision

Mathematical Methods in Computer Vision
Author: Peter J. Olver
Publisher: Springer Science & Business Media
Total Pages: 176
Release: 2003-10
Genre: Business & Economics
ISBN: 9780387004976


Download Mathematical Methods in Computer Vision Book in PDF, Epub and Kindle

"Comprises some of the key work presented at two IMA Wokshops on Computer Vision during fall of 2000."--Pref.

Digital Image Processing

Digital Image Processing
Author: J M Blackledge
Publisher: Elsevier
Total Pages: 826
Release: 2005-11-30
Genre: Computers
ISBN: 0857099469


Download Digital Image Processing Book in PDF, Epub and Kindle

This authoritative text (the second part of a complete MSc course) provides mathematical methods required to describe images, image formation and different imaging systems, coupled with the principle techniques used for processing digital images. It is based on a course for postgraduates reading physics, electronic engineering, telecommunications engineering, information technology and computer science. This book relates the methods of processing and interpreting digital images to the ‘physics’ of imaging systems. Case studies reinforce the methods discussed, with examples of current research themes. Provides mathematical methods required to describe images, image formation and different imaging systems Outlines the principle techniques used for processing digital images Relates the methods of processing and interpreting digital images to the ‘physics’ of imaging systems

Image Processing

Image Processing
Author: Artyom M. Grigoryan
Publisher: CRC Press
Total Pages: 468
Release: 2018-09-03
Genre: Technology & Engineering
ISBN: 1351832379


Download Image Processing Book in PDF, Epub and Kindle

Focusing on mathematical methods in computer tomography, Image Processing: Tensor Transform and Discrete Tomography with MATLAB® introduces novel approaches to help in solving the problem of image reconstruction on the Cartesian lattice. Specifically, it discusses methods of image processing along parallel rays to more quickly and accurately reconstruct images from a finite number of projections, thereby avoiding overradiation of the body during a computed tomography (CT) scan. The book presents several new ideas, concepts, and methods, many of which have not been published elsewhere. New concepts include methods of transferring the geometry of rays from the plane to the Cartesian lattice, the point map of projections, the particle and its field function, and the statistical model of averaging. The authors supply numerous examples, MATLAB®-based programs, end-of-chapter problems, and experimental results of implementation. The main approach for image reconstruction proposed by the authors differs from existing methods of back-projection, iterative reconstruction, and Fourier and Radon filtering. In this book, the authors explain how to process each projection by a system of linear equations, or linear convolutions, to calculate the corresponding part of the 2-D tensor or paired transform of the discrete image. They then describe how to calculate the inverse transform to obtain the reconstruction. The proposed models for image reconstruction from projections are simple and result in more accurate reconstructions. Introducing a new theory and methods of image reconstruction, this book provides a solid grounding for those interested in further research and in obtaining new results. It encourages readers to develop effective applications of these methods in CT.

Image Reconstruction

Image Reconstruction
Author: Gengsheng Lawrence Zeng
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 289
Release: 2017-03-20
Genre: Medical
ISBN: 3110498022


Download Image Reconstruction Book in PDF, Epub and Kindle

This book introduces the classical and modern image reconstruction technologies. It covers topics in two-dimensional (2D) parallel-beam and fan-beam imaging, three-dimensional (3D) parallel ray, parallel plane, and cone-beam imaging. Both analytical and iterative methods are presented. The applications in X-ray CT, SPECT (single photon emission computed tomography), PET (positron emission tomography), and MRI (magnetic resonance imaging) are discussed. Contemporary research results in exact region-of-interest (ROI) reconstruction with truncated projections, Katsevich’s cone-beam filtered backprojection algorithm, and reconstruction with highly under-sampled data are included. The last chapter of the book is devoted to the techniques of using a fast analytical algorithm to reconstruct an image that is equivalent to an iterative reconstruction. These techniques are the author’s most recent research results. This book is intended for students, engineers, and researchers who are interested in medical image reconstruction. Written in a non-mathematical way, this book provides an easy access to modern mathematical methods in medical imaging. Table of Content: Chapter 1 Basic Principles of Tomography 1.1 Tomography 1.2 Projection 1.3 Image Reconstruction 1.4 Backprojection 1.5 Mathematical Expressions Problems References Chapter 2 Parallel-Beam Image Reconstruction 2.1 Fourier Transform 2.2 Central Slice Theorem 2.3 Reconstruction Algorithms 2.4 A Computer Simulation 2.5 ROI Reconstruction with Truncated Projections 2.6 Mathematical Expressions (The Fourier Transform and Convolution , The Hilbert Transform and the Finite Hilbert Transform , Proof of the Central Slice Theorem, Derivation of the Filtered Backprojection Algorithm , Expression of the Convolution Backprojection Algorithm, Expression of the Radon Inversion Formula ,Derivation of the Backprojection-then-Filtering Algorithm Problems References Chapter 3 Fan-Beam Image Reconstruction 3.1 Fan-Beam Geometry and Point Spread Function 3.2 Parallel-Beam to Fan-Beam Algorithm Conversion 3.3 Short Scan 3.4 Mathematical Expressions (Derivation of a Filtered Backprojection Fan-Beam Algorithm, A Fan-Beam Algorithm Using the Derivative and the Hilbert Transform) Problems References Chapter 4 Transmission and Emission Tomography 4.1 X-Ray Computed Tomography 4.2 Positron Emission Tomography and Single Photon Emission Computed Tomography 4.3 Attenuation Correction for Emission Tomography 4.4 Mathematical Expressions Problems References Chapter 5 3D Image Reconstruction 5.1 Parallel Line-Integral Data 5.2 Parallel Plane-Integral Data 5.3 Cone-Beam Data (Feldkamp's Algorithm, Grangeat's Algorithm, Katsevich's Algorithm) 5.4 Mathematical Expressions (Backprojection-then-Filtering for Parallel Line-Integral Data, Filtered Backprojection Algorithm for Parallel Line-Integral Data, 3D Radon Inversion Formula, 3D Backprojection-then-Filtering Algorithm for Radon Data, Feldkamp's Algorithm, Tuy's Relationship, Grangeat's Relationship, Katsevich’s Algorithm) Problems References Chapter 6 Iterative Reconstruction 6.1 Solving a System of Linear Equations 6.2 Algebraic Reconstruction Technique 6.3 Gradient Descent Algorithms 6.4 Maximum-Likelihood Expectation-Maximization Algorithms 6.5 Ordered-Subset Expectation-Maximization Algorithm 6.6 Noise Handling (Analytical Methods, Iterative Methods, Iterative Methods) 6.7 Noise Modeling as a Likelihood Function 6.8 Including Prior Knowledge 6.9 Mathematical Expressions (ART, Conjugate Gradient Algorithm, ML-EM, OS-EM, Green’s One-Step Late Algorithm, Matched and Unmatched Projector/Backprojector Pairs ) 6.10 Reconstruction Using Highly Undersampled Data with l0 Minimization Problems References Chapter 7 MRI Reconstruction 7.1 The 'M' 7.2 The 'R' 7.3 The 'I'; (To Obtain z-Information, x-Information, y-Information) 7.4 Mathematical Expressions Problems References Indexing

Introduction to the Mathematics of Medical Imaging

Introduction to the Mathematics of Medical Imaging
Author: Charles L. Epstein
Publisher: SIAM
Total Pages: 794
Release: 2008-01-01
Genre: Mathematics
ISBN: 9780898717792


Download Introduction to the Mathematics of Medical Imaging Book in PDF, Epub and Kindle

At the heart of every medical imaging technology is a sophisticated mathematical model of the measurement process and an algorithm to reconstruct an image from the measured data. This book provides a firm foundation in the mathematical tools used to model the measurements and derive the reconstruction algorithms used in most of these modalities. The text uses X-ray computed tomography (X-ray CT) as a 'pedagogical machine' to illustrate important ideas and its extensive discussion of background material makes the more advanced mathematical topics accessible to people with a less formal mathematical education. This new edition contains a chapter on magnetic resonance imaging (MRI), a revised section on the relationship between the continuum and discrete Fourier transforms, an improved description of the gridding method, and new sections on both Grangreat's formula and noise analysis in MR-imaging. Mathematical concepts are illuminated with over 200 illustrations and numerous exercises.

Level Set and PDE Based Reconstruction Methods in Imaging

Level Set and PDE Based Reconstruction Methods in Imaging
Author: Martin Burger
Publisher: Springer
Total Pages: 0
Release: 2013-10-28
Genre: Mathematics
ISBN: 9783319017112


Download Level Set and PDE Based Reconstruction Methods in Imaging Book in PDF, Epub and Kindle

This book takes readers on a tour through modern methods in image analysis and reconstruction based on level set and PDE techniques, the major focus being on morphological and geometric structures in images. The aspects covered include edge-sharpening image reconstruction and denoising, segmentation and shape analysis in images, and image matching. For each, the lecture notes provide insights into the basic analysis of modern variational and PDE-based techniques, as well as computational aspects and applications.