Mathematics of Large Eddy Simulation of Turbulent Flows

Mathematics of Large Eddy Simulation of Turbulent Flows
Author: Luigi Carlo Berselli
Publisher: Springer Science & Business Media
Total Pages: 378
Release: 2006
Genre: Computers
ISBN: 9783540263166


Download Mathematics of Large Eddy Simulation of Turbulent Flows Book in PDF, Epub and Kindle

The LES-method is rapidly developing in many practical applications in engineering The mathematical background is presented here for the first time in book form by one of the leaders in the field

Large Eddy Simulation of Turbulent Incompressible Flows

Large Eddy Simulation of Turbulent Incompressible Flows
Author: Volker John
Publisher: Springer Science & Business Media
Total Pages: 270
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 3642186823


Download Large Eddy Simulation of Turbulent Incompressible Flows Book in PDF, Epub and Kindle

Large eddy simulation (LES) seeks to simulate the large structures of a turbulent flow. This is the first monograph which considers LES from a mathematical point of view. It concentrates on LES models for which mathematical and numerical analysis is already available and on related LES models. Most of the available analysis is given in detail, the implementation of the LES models into a finite element code is described, the efficient solution of the discrete systems is discussed and numerical studies with the considered LES models are presented.

Mathematical and Numerical Foundations of Turbulence Models and Applications

Mathematical and Numerical Foundations of Turbulence Models and Applications
Author: Tomás Chacón Rebollo
Publisher: Springer
Total Pages: 530
Release: 2014-06-17
Genre: Mathematics
ISBN: 1493904558


Download Mathematical and Numerical Foundations of Turbulence Models and Applications Book in PDF, Epub and Kindle

With applications to climate, technology, and industry, the modeling and numerical simulation of turbulent flows are rich with history and modern relevance. The complexity of the problems that arise in the study of turbulence requires tools from various scientific disciplines, including mathematics, physics, engineering and computer science. Authored by two experts in the area with a long history of collaboration, this monograph provides a current, detailed look at several turbulence models from both the theoretical and numerical perspectives. The k-epsilon, large-eddy simulation and other models are rigorously derived and their performance is analyzed using benchmark simulations for real-world turbulent flows. Mathematical and Numerical Foundations of Turbulence Models and Applications is an ideal reference for students in applied mathematics and engineering, as well as researchers in mathematical and numerical fluid dynamics. It is also a valuable resource for advanced graduate students in fluid dynamics, engineers, physical oceanographers, meteorologists and climatologists.

Large Eddy Simulation for Incompressible Flows

Large Eddy Simulation for Incompressible Flows
Author: P. Sagaut
Publisher: Springer Science & Business Media
Total Pages: 600
Release: 2006
Genre: Computers
ISBN: 9783540263449


Download Large Eddy Simulation for Incompressible Flows Book in PDF, Epub and Kindle

First concise textbook on Large-Eddy Simulation, a very important method in scientific computing and engineering From the foreword to the third edition written by Charles Meneveau: "... this meticulously assembled and significantly enlarged description of the many aspects of LES will be a most welcome addition to the bookshelves of scientists and engineers in fluid mechanics, LES practitioners, and students of turbulence in general."

Large Eddy Simulation for Incompressible Flows

Large Eddy Simulation for Incompressible Flows
Author: Pierre Sagaut
Publisher: Springer Science & Business Media
Total Pages: 326
Release: 2013-03-09
Genre: Science
ISBN: 3662044161


Download Large Eddy Simulation for Incompressible Flows Book in PDF, Epub and Kindle

First concise textbook on Large-Eddy Simulation, a very important method in scientific computing and engineering From the foreword to the third edition written by Charles Meneveau: "... this meticulously assembled and significantly enlarged description of the many aspects of LES will be a most welcome addition to the bookshelves of scientists and engineers in fluid mechanics, LES practitioners, and students of turbulence in general."

Large-Eddy Simulations of Turbulence

Large-Eddy Simulations of Turbulence
Author: M. Lesieur
Publisher: Cambridge University Press
Total Pages: 240
Release: 2005-08-22
Genre: Mathematics
ISBN: 9780521781244


Download Large-Eddy Simulations of Turbulence Book in PDF, Epub and Kindle

Large-Eddy Simulations of Turbulence is a reference for LES, direct numerical simulation and Reynolds-averaged Navier-Stokes simulation.

Direct and Large-Eddy Simulation IV

Direct and Large-Eddy Simulation IV
Author: Bernard Geurts
Publisher: Springer Science & Business Media
Total Pages: 543
Release: 2013-06-29
Genre: Technology & Engineering
ISBN: 9401712638


Download Direct and Large-Eddy Simulation IV Book in PDF, Epub and Kindle

This volume contains the proceedings of the 2001 DLES4 workshop. It describes and discusses state-of-the-art modeling and simulation approaches for complex flows. Fundamental turbulence and modeling issues but also elements from modern numerical analysis are at the heart of this field of interest.

Direct and Large-Eddy Simulation I

Direct and Large-Eddy Simulation I
Author: Peter R. Voke
Publisher: Springer Science & Business Media
Total Pages: 438
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 940111000X


Download Direct and Large-Eddy Simulation I Book in PDF, Epub and Kindle

It is a truism that turbulence is an unsolved problem, whether in scientific, engin eering or geophysical terms. It is strange that this remains largely the case even though we now know how to solve directly, with the help of sufficiently large and powerful computers, accurate approximations to the equations that govern tur bulent flows. The problem lies not with our numerical approximations but with the size of the computational task and the complexity of the solutions we gen erate, which match the complexity of real turbulence precisely in so far as the computations mimic the real flows. The fact that we can now solve some turbu lence in this limited sense is nevertheless an enormous step towards the goal of full understanding. Direct and large-eddy simulations are these numerical solutions of turbulence. They reproduce with remarkable fidelity the statistical, structural and dynamical properties of physical turbulent and transitional flows, though since the simula tions are necessarily time-dependent and three-dimensional they demand the most advanced computer resources at our disposal. The numerical techniques vary from accurate spectral methods and high-order finite differences to simple finite-volume algorithms derived on the principle of embedding fundamental conservation prop erties in the numerical operations. Genuine direct simulations resolve all the fluid motions fully, and require the highest practical accuracy in their numerical and temporal discretisation. Such simulations have the virtue of great fidelity when carried out carefully, and repre sent a most powerful tool for investigating the processes of transition to turbulence.

Quality and Reliability of Large-Eddy Simulations II

Quality and Reliability of Large-Eddy Simulations II
Author: Maria Vittoria Salvetti
Publisher: Springer Science & Business Media
Total Pages: 442
Release: 2010-11-03
Genre: Science
ISBN: 9400702310


Download Quality and Reliability of Large-Eddy Simulations II Book in PDF, Epub and Kindle

The second Workshop on "Quality and Reliability of Large-Eddy Simulations", QLES2009, was held at the University of Pisa from September 9 to September 11, 2009. Its predecessor, QLES2007, was organized in 2007 in Leuven (Belgium). The focus of QLES2009 was on issues related to predicting, assessing and assuring the quality of LES. The main goal of QLES2009 was to enhance the knowledge on error sources and on their interaction in LES and to devise criteria for the prediction and optimization of simulation quality, by bringing together mathematicians, physicists and engineers and providing a platform specifically addressing these aspects for LES. Contributions were made by leading experts in the field. The present book contains the written contributions to QLES2009 and is divided into three parts, which reflect the main topics addressed at the workshop: (i) SGS modeling and discretization errors; (ii) Assessment and reduction of computational errors; (iii) Mathematical analysis and foundation for SGS modeling.