Thin Film Materials, Processes, and Reliability

Thin Film Materials, Processes, and Reliability
Author: G. S. Mathad
Publisher: The Electrochemical Society
Total Pages: 438
Release: 2003
Genre: Technology & Engineering
ISBN: 9781566773935


Download Thin Film Materials, Processes, and Reliability Book in PDF, Epub and Kindle

Handbook of Thin Film Deposition

Handbook of Thin Film Deposition
Author: Krishna Seshan
Publisher: William Andrew
Total Pages: 472
Release: 2018-02-23
Genre: Technology & Engineering
ISBN: 0128123125


Download Handbook of Thin Film Deposition Book in PDF, Epub and Kindle

Handbook of Thin Film Deposition, Fourth Edition, is a comprehensive reference focusing on thin film technologies and applications used in the semiconductor industry and the closely related areas of thin film deposition, thin film micro properties, photovoltaic solar energy applications, materials for memory applications and methods for thin film optical processes. The book is broken up into three sections: scaling, equipment and processing, and applications. In this newly revised edition, the handbook will also explore the limits of thin film applications, most notably as they relate to applications in manufacturing, materials, design and reliability. Offers a practical survey of thin film technologies aimed at engineers and managers involved in all stages of the process: design, fabrication, quality assurance, applications and the limitations faced by those processes Covers core processes and applications in the semiconductor industry and new developments within the photovoltaic and optical thin film industries Features a new chapter discussing Gates Dielectrics

Plasma Enhanced Layer-by-layer Deposition and Nano-crystallization of Si:H Films

Plasma Enhanced Layer-by-layer Deposition and Nano-crystallization of Si:H Films
Author: Zhuo (Carol). Chen
Publisher:
Total Pages:
Release: 2012
Genre: Chemical engineering
ISBN:


Download Plasma Enhanced Layer-by-layer Deposition and Nano-crystallization of Si:H Films Book in PDF, Epub and Kindle

Nano-crystalline Si (nc-Si) is a promising candidate for photovoltaic applications due to its better stability compared to amorphous Si, and relatively easy to manufacture at low cost, by plasma enhanced chemical vapor deposition (PECVD), compared to single crystal Si. The crystalline volume fraction of nc-Si films needs to be well controlled to prevent light-induced degradation of the otherwise amorphous hydrogenated Si (a-Si:H). A layer-by-layer technique using two separate plasma sources for a-Si:H deposition and nano-crystallization was developed. A capacitively-coupled plasma (CCP) with SiH4/He feed gas was used to deposit thin a-Si:H layers that were subsequently exposed to a H2 or D2 inductively-coupled plasma (ICP) to induce crystallization in the films. Deposition and nano-crystallization were performed sequentially and periodically to grow thin films. Raman spectroscopy was used to characterize the films and determine the fraction of crystalline. The crystalline volume fraction obtained in this work ranged from 0% to 72%. Many short exposures (20 s or 5 s) to the plasmas were more effective in producing nano-crystalline Si compared to one long exposure (40 min. or 4 min.). In addition, the fraction of nano-crystalline Si increased with increasing H2 ICP-to-SiH4/He CCP exposure time ratio (from 1/4 to 3/2). The crystallites had columnar structure along the film growth direction based on transmission electron microscopy (TEM). Etching of films by the D2 plasma was monitored by mass spectrometry. At 250 oC, the amorphous Si etching rate (0.25 nm/min) was much lower than the deposition rate (1.4 nm/min), and that etching did not occur exclusively on the surface or the near surface region. The blueshift (by about 1 eV) of the dielectric constants peak, found by spectroscopic ellipsometry (SE), suggested the formation of nano-crystallites in the bulk of the films. It is proposed that by tailoring the CCP deposition time as well as the H2 ICP exposure time per cycle, the crystalline fraction and crystallite size of the resulting films can be controlled for more stable solar cell materials. Further, by spatially separating film deposition and nano-crystallization, each of these processes can be individually optimized, providing flexibility in controlling film nanostructure and properties

Investigation of Post-Plasma Etch Fluorocarbon Residue Characterization, Removal and Plasma-Induced Low-K Damage for Advanced Interconnect Applications

Investigation of Post-Plasma Etch Fluorocarbon Residue Characterization, Removal and Plasma-Induced Low-K Damage for Advanced Interconnect Applications
Author: Tamal Mukherjee
Publisher:
Total Pages: 135
Release: 2016
Genre: Fluoropolymers
ISBN:


Download Investigation of Post-Plasma Etch Fluorocarbon Residue Characterization, Removal and Plasma-Induced Low-K Damage for Advanced Interconnect Applications Book in PDF, Epub and Kindle

Modern three-dimensional integrated circuit design is rapidly evolving to more complex architecture. With continuous downscaling of devices, there is a pressing need for metrology tool development for rapid but efficient process and material characterization. In this dissertation work, application of a novel multiple internal reflection infrared spectroscopy metrology is discussed in various semiconductor fabrication process development. Firstly, chemical bonding structure of thin fluorocarbon polymer film deposited on patterned nanostructures was elucidated. Different functional groups were identified by specific derivatization reactions and model bonding configuration was proposed for the first time. In a continued effort, wet removal of these fluorocarbon polymer was investigated in presence of UV light. Mechanistic hypothesis for UV-assisted enhanced polymer cleaning efficiency was put forward supported by detailed theoretical consideration and experimental evidence. In another endeavor, plasma-induced damage to porous low-dielectric constant interlayer dielectric material was studied. Both qualitative and quantitative analyses of dielectric degradation in terms of increased silanol content and carbon depletion provided directions towards less aggressive plasma etch and strip process development. Infrared spectroscopy metrology was also utilized in surface functionalization evaluation of very thin organic films deposited by wet and dry chemistries. Palladium binding by surface amine groups was examined in plasma-polymerized amorphous hydrocarbon films and in self-assembled aminosilane thin films. Comparison of amine concentration under different deposition conditions guided effective process optimization. A time- and cost-effective method such as current FTIR metrology that provides in-depth chemical information about thin films, surfaces, interfaces and bulk layers can be increasingly valuable as critical dimensions continue to scale down and subtle process variances begin to have a significant impact on device performance.