Fundamentals and Applications of Lithium-ion Batteries in Electric Drive Vehicles

Fundamentals and Applications of Lithium-ion Batteries in Electric Drive Vehicles
Author: Jiuchun Jiang
Publisher: John Wiley & Sons
Total Pages: 296
Release: 2015-05-18
Genre: Technology & Engineering
ISBN: 1118414780


Download Fundamentals and Applications of Lithium-ion Batteries in Electric Drive Vehicles Book in PDF, Epub and Kindle

A theoretical and technical guide to the electric vehicle lithium-ion battery management system Covers the timely topic of battery management systems for lithium batteries. After introducing the problem and basic background theory, it discusses battery modeling and state estimation. In addition to theoretical modeling it also contains practical information on charging and discharging control technology, cell equalisation and application to electric vehicles, and a discussion of the key technologies and research methods of the lithium-ion power battery management system. The author systematically expounds the theory knowledge included in the lithium-ion battery management systems and its practical application in electric vehicles, describing the theoretical connotation and practical application of the battery management systems. Selected graphics in the book are directly derived from the real vehicle tests. Through comparative analysis of the different system structures and different graphic symbols, related concepts are clear and the understanding of the battery management systems is enhanced. Contents include: key technologies and the difficulty point of vehicle power battery management system; lithium-ion battery performance modeling and simulation; the estimation theory and methods of the lithium-ion battery state of charge, state of energy, state of health and peak power; lithium-ion battery charge and discharge control technology; consistent evaluation and equalization techniques of the battery pack; battery management system design and application in electric vehicles. A theoretical and technical guide to the electric vehicle lithium-ion battery management system Using simulation technology, schematic diagrams and case studies, the basic concepts are described clearly and offer detailed analysis of battery charge and discharge control principles Equips the reader with the understanding and concept of the power battery, providing a clear cognition of the application and management of lithium ion batteries in electric vehicles Arms audiences with lots of case studies Essential reading for Researchers and professionals working in energy technologies, utility planners and system engineers.

Progress in Modeling and Simulation of Batteries

Progress in Modeling and Simulation of Batteries
Author: John Turner
Publisher: SAE International
Total Pages: 98
Release: 2016-06-15
Genre: Technology & Engineering
ISBN: 0768083664


Download Progress in Modeling and Simulation of Batteries Book in PDF, Epub and Kindle

Modeling and simulation of batteries, in conjunction with theory and experiment, are important research tools that offer opportunities for advancement of technologies that are critical to electric motors. The development of data from the application of these tools can provide the basis for managerial and technical decision-making. Together, these will continue to transform batteries for electric vehicles. This collection of nine papers presents the modeling and simulation of batteries and the continuing contribution being made to this impressive progress, including topics that cover: • Thermal behavior and characteristics • Battery management system design and analysis • Moderately high-fidelity 3D capabilities • Optimization Techniques and Durability As electric vehicles continue to gain interest from manufacturers and consumers alike, improvements in economy and affordability, as well as adoption of alternative fuel sources to meet government mandates are driving battery research and development. Progress in modeling and simulation will continue to contribute to battery improvements that deliver increased power, energy storage, and durability to further enhance the appeal of electric vehicles.

Battery System Modeling

Battery System Modeling
Author: Shunli Wang
Publisher: Elsevier
Total Pages: 356
Release: 2021-06-23
Genre: Science
ISBN: 0323904335


Download Battery System Modeling Book in PDF, Epub and Kindle

Battery System Modeling provides advances on the modeling of lithium-ion batteries. Offering step-by-step explanations, the book systematically guides the reader through the modeling of state of charge estimation, energy prediction, power evaluation, health estimation, and active control strategies. Using applications alongside practical case studies, each chapter shows the reader how to use the modeling tools provided. Moreover, the chemistry and characteristics are described in detail, with algorithms provided in every chapter. Providing a technical reference on the design and application of Li-ion battery management systems, this book is an ideal reference for researchers involved in batteries and energy storage. Moreover, the step-by-step guidance and comprehensive introduction to the topic makes it accessible to audiences of all levels, from experienced engineers to graduates. Explains how to model battery systems, including equivalent, electrical circuit and electrochemical nernst modeling Includes comprehensive coverage of battery state estimation methods, including state of charge estimation, energy prediction, power evaluation and health estimation Provides a dedicated chapter on active control strategies

Fundamentals and Applications of Lithium-ion Batteries in Electric Drive Vehicles

Fundamentals and Applications of Lithium-ion Batteries in Electric Drive Vehicles
Author: Jiuchun Jiang
Publisher:
Total Pages: 300
Release: 2015
Genre:
ISBN:


Download Fundamentals and Applications of Lithium-ion Batteries in Electric Drive Vehicles Book in PDF, Epub and Kindle

A theoretical and technical guide to the electric vehicle lithium-ion battery management system Covers the timely topic of battery management systems for lithium batteries. After introducing the problem and basic background theory, it discusses battery modeling and state estimation. In addition to theoretical modeling it also contains practical information on charging and discharging control technology, cell equalisation and application to electric vehicles, and a discussion of the key technologies and research methods of the lithium-ion power battery management system. The author systematically expounds the theory knowledge included in the lithium-ion battery management systems and its practical application in electric vehicles, describing the theoretical connotation and practical application of the battery management systems. Selected graphics in the book are directly derived from the real vehicle tests. Through comparative analysis of the different system structures and different graphic symbols, related concepts are clear and the understanding of the battery management systems is enhanced. Contents include : key technologies and the difficulty point of vehicle power battery management system; lithium-ion battery performance modeling and simulation; the estimation theory and methods of the lithium-ion battery state of charge, state of energy, state of health and peak power; lithium-ion battery charge and discharge control technology; consistent evaluation and equalization techniques of the battery pack; battery management system design and application in electric vehicles. A theoretical and technical guide to the electric vehicle lithium-ion battery management system Using simulation technology, schematic diagrams and case studies, the basic concepts are described clearly and offer detailed analysis of battery charge and discharge control principles Equips the reader with the understanding and concept of the power battery, providing a clear cognition of the application and management of lithium ion batteries in electric vehicles Arms audiences with lots of case studies Essential reading for Researchers and professionals working in energy technologies, utility planners and system engineers.

Modeling and State Estimation of Automotive Lithium-Ion Batteries

Modeling and State Estimation of Automotive Lithium-Ion Batteries
Author: Shunli Wang
Publisher: CRC Press
Total Pages: 145
Release: 2024-07-16
Genre: Science
ISBN: 1040046754


Download Modeling and State Estimation of Automotive Lithium-Ion Batteries Book in PDF, Epub and Kindle

This book aims to evaluate and improve the state of charge (SOC) and state of health (SOH) of automotive lithium-ion batteries. The authors first introduce the basic working principle and dynamic test characteristics of lithium-ion batteries. They present the dynamic transfer model, compare it with the traditional second-order reserve capacity (RC) model, and demonstrate the advantages of the proposed new model. In addition, they propose the chaotic firefly optimization algorithm and demonstrate its effectiveness in improving the accuracy of SOC and SOH estimation through theoretical and experimental analysis. The book will benefit researchers and engineers in the new energy industry and provide students of science and engineering with some innovative aspects of battery modeling.

Experimental Investigation and Modeling of Lithium-ion Battery Cells and Packs for Electric Vehicles

Experimental Investigation and Modeling of Lithium-ion Battery Cells and Packs for Electric Vehicles
Author: Satyam Panchal
Publisher:
Total Pages: 0
Release: 2016
Genre:
ISBN:


Download Experimental Investigation and Modeling of Lithium-ion Battery Cells and Packs for Electric Vehicles Book in PDF, Epub and Kindle

The greatest challenge in the production of future generation electric and hybrid vehicle (EV and HEV) technology is the control and management of operating temperatures and heat generation. Vehicle performance, reliability and ultimately consumer market adoption are dependent on the successful design of the thermal management system. In addition, accurate battery thermal models capable of predicting the behavior of lithium-ion batteries under various operating conditions are necessary. Therefore, this work presents the thermal characterization of a prismatic lithium-ion battery cell and pack comprised of LiFePO4 electrode material. Thermal characterization is performed via experiments that enable the development of an empirical battery thermal model. This work starts with the design and development of an apparatus to measure the surface temperature profiles, heat flux, and heat generation from a lithium-ion battery cell and pack at different discharge rates of 1C, 2C, 3C, and 4C and varying operating temperature/boundary conditions (BCs) of 5oC, 15°C, 25°C, and 35°C for water cooling and ~22°C for air cooling. For this, a large sized prismatic LiFePO4 battery is cooled by two cold plates and nineteen thermocouples and three heat flux sensors are applied to the battery at distributed locations. The experimental results show that the temperature distribution is greatly affected by both the discharge rate and BCs. The developed experimental facility can be used for the measurement of heat generation from any prismatic battery, regardless of chemistry. In addition, thermal images are obtained at different discharge rates to enable visualization of the temperature distribution. In the second part of the research, an empirical battery thermal model is developed at the above mentioned discharge rates and varying BCs based on the acquired data using a neural network approach. The simulated data from the developed model is validated with experimental data in terms of the discharge temperature, discharge voltage, heat flux profiles, and the rate of heat generation profile. It is noted that the lowest temperature is 7.11°C observed for 1C-5°C and the highest temperature is observed to be 41.11°C at the end of discharge for 4C-35°C for cell level testing. The proposed battery thermal model can be used for any kind of Lithium-ion battery. An example of this use is demonstrated by validating the thermal performance of a realistic drive cycle collected from an EV at different environment temperatures. In the third part of the research, an electrochemical battery thermal model is developed for a large sized prismatic lithium-ion battery under different C-rates. This model is based on the principles of transport phenomena, electrochemistry, and thermodynamics presented by coupled nonlinear partial differential equations (PDEs) in x, r, and t. The developed model is validated with an experimental data and IR imaging obtained for this particular battery. It is seen that the surface temperature increases faster at a higher discharge rate and a higher temperature distribution is noted near electrodes. In the fourth part of the research, temperature and velocity contours are studied using a computational approach for mini-channel cold plates used for a water cooled large sized prismatic lithium-ion battery at different C-rates and BCs. Computationally, a high-fidelity turbulence model is also developed using ANSYS Fluent for a mini-channel cold plate, and the simulated data are then validated with the experimental data for temperature profiles. The present results show that increased discharge rates and increased operating temperature results in increased temperature at the cold plates. In the last part of this research, a battery degradation model of a lithium-ion battery, using real world drive cycles collected from an EV, is presented. For this, a data logger is installed in the EV and real world drive cycle data are collected. The vehicle is driven in the province of Ontario, Canada, and several drive cycles were recorded over a three-month period. A Thevenin battery model is developed in MATLAB along with an empirical degradation model. The model is validated in terms of voltage and state of charge (SOC) for all collected drive cycles. The presented model closely estimates the profiles observed in the experimental data. Data collected from the drive cycles show that a 4.60% capacity fade occurred over 3 months of driving.

Design and Analysis of Large Lithium-Ion Battery Systems

Design and Analysis of Large Lithium-Ion Battery Systems
Author: Shriram Santhanagopalan
Publisher: Artech House
Total Pages: 241
Release: 2014-12-01
Genre: Technology & Engineering
ISBN: 1608077144


Download Design and Analysis of Large Lithium-Ion Battery Systems Book in PDF, Epub and Kindle

This new resource provides you with an introduction to battery design and test considerations for large-scale automotive, aerospace, and grid applications. It details the logistics of designing a professional, large, Lithium-ion battery pack, primarily for the automotive industry, but also for non-automotive applications. Topics such as thermal management for such high-energy and high-power units are covered extensively, including detailed design examples. Every aspect of battery design and analysis is presented from a hands-on perspective. The authors work extensively with engineers in the field and this book is a direct response to frequently-received queries. With the authors’ unique expertise in areas such as battery thermal evaluation and design, physics-based modeling, and life and reliability assessment and prediction, this book is sure to provide you with essential, practical information on understanding, designing, and building large format Lithium-ion battery management systems.

Modeling and Simulation of Lithium-ion Power Battery Thermal Management

Modeling and Simulation of Lithium-ion Power Battery Thermal Management
Author: Junqiu Li
Publisher: Springer Nature
Total Pages: 343
Release: 2022-05-09
Genre: Technology & Engineering
ISBN: 9811908443


Download Modeling and Simulation of Lithium-ion Power Battery Thermal Management Book in PDF, Epub and Kindle

This book focuses on the thermal management technology of lithium-ion batteries for vehicles. It introduces the charging and discharging temperature characteristics of lithium-ion batteries for vehicles, the method for modeling heat generation of lithium-ion batteries, experimental research and simulation on air-cooled and liquid-cooled heat dissipation of lithium-ion batteries, lithium-ion battery heating method based on PTC and wide-line metal film, self-heating using sinusoidal alternating current. This book is mainly for practitioners in the new energy vehicle industry, and it is suitable for reading and reference by researchers and engineering technicians in related fields such as new energy vehicles, thermal management and batteries. It can also be used as a reference book for undergraduates and graduate students in energy and power, electric vehicles, batteries and other related majors.